Tuesday, June 3, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Using quantum computing to protect AI from attack

Simon Osuji by Simon Osuji
August 14, 2023
in Artificial Intelligence
0
Using quantum computing to protect AI from attack
0
SHARES
2
VIEWS
Share on FacebookShare on Twitter


Using quantum computing to protect AI from attack
The vulnerability of neural networks raises safety concerns in potentially life-threatening situations like self-driving cars. Credit: Shutterstock

Machine learning is a field of artificial intelligence (AI) where computer models become experts in various tasks by consuming large amounts of data. This is instead of a human explicitly programming this level of expertise.

Related posts

Aventon Level 3 Review: A Fantastic First Electric Bike

Aventon Level 3 Review: A Fantastic First Electric Bike

June 3, 2025
20 Best Deals on Father’s Day Gifts (2025)

20 Best Deals on Father’s Day Gifts (2025)

June 3, 2025

For example, modern chess AIs do not need to be taught chess strategies by human grandmasters, but can “learn” them independently by playing millions of games against copies of themselves.

This is invaluable in situations where writing down explicit instructions is impractical, if not impossible—how do you define a mathematical function that can tell you if a picture contains a cat or a dog?

Human children never learn any such function, but rather see many examples of cats and dogs, then eventually develop an understanding of their differences.

Machine learning is about replicating this process in computers.

But despite their incredible successes and increasingly widespread deployment, machine learning-based frameworks remain highly susceptible to adversarial attacks—that is, malicious tampering with their data causing them to fail in surprising ways.

For example, image-classifying models (which analyze photos to identify and recognize a wide variety of criteria) can often be fooled by the addition of well-crafted alterations (known as perturbations) to their input images that are so small they are imperceptible to the human eye. And this can be exploited.

The continued vulnerability to attacks like these also raises serious questions about the safety of deploying machine learning neural networks in potentially life-threatening situations. This includes applications like self-driving cars, where the system could be confused into driving through an intersection by an innocuous piece of graffiti on a stop sign.

At a crucial time when the development and deployment of AI are rapidly evolving, our research team is looking at ways we can use quantum computing to protect AI from these vulnerabilities,

Machine learning and quantum computing

Recent advances in quantum computing have generated much excitement about the prospect of enhancing machine learning with quantum computers. Various “quantum machine learning” algorithms already having been proposed, including quantum generalizations of the standard classical methods.

Generalization refers to a learning model’s ability to adapt properly to new, previously unseen data.

It is believed quantum machine learning models can learn certain types of data drastically faster than any model designed for current or “classical” computers.

Ordinary computers work with bits of data that can be either “zero” or “one”—a two-level classical system.

Quantum computers work with “qubits,” states of two-level quantum systems, which exhibit strange additional properties that can be harnessed in order to tackle certain problems more efficiently than their classical counterparts

What is less clear, however, is how widespread these speedups will be and how useful quantum machine learning will be in practice.

This is because although quantum computers are expected to efficiently learn a wider class of models than their classical counterparts, there’s no guarantee these new models will be useful for most machine-learning tasks in which people are actually interested. These might include medical classification problems or generative AI systems.

These challenges motivated our team to consider what other benefits quantum computing could bring to machine learning tasks—other than the usual goals of improving efficiency or accuracy.

Shielding AI from attacks

In our latest work, published in Physical Review Research, we suggest quantum machine learning models may be better defended against adversarial attacks generated by classical computers.

Adversarial attacks work by identifying and exploiting the features used by a machine learning model.

But the features used by generic quantum machine learning models are inaccessible to classical computers, and therefore invisible to an adversary armed only with classical computing resources.

These ideas could also be used to detect the presence of adversarial attacks, by simultaneously using classical and quantum networks.

Under normal conditions, both networks should make the same predictions, but in the presence of an attack—their outputs will diverge.

While this is encouraging, quantum machine learning continues to face significant challenges. Chief among them is the massive capability gap that separates classical and quantum computing hardware.

Today’s quantum computers remain significantly limited by their size and their high error rates, which preclude them from carrying out long calculations.

Formidable engineering challenges remain, but if these can be overcome, the unique capabilities of large-scale quantum computers will doubtless deliver surprising benefits across a wide range of fields.

More information:
Maxwell T. West et al, Benchmarking adversarially robust quantum machine learning at scale, Physical Review Research (2023). DOI: 10.1103/PhysRevResearch.5.023186

Provided by
University of Melbourne

Citation:
Using quantum computing to protect AI from attack (2023, August 14)
retrieved 14 August 2023
from https://techxplore.com/news/2023-08-quantum-ai.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Halting progress on net zero could mean extra costs, PM warned

Next Post

Pro-Bitcoin Candidate Javier Milei Wins Argentina Primary Election

Next Post
Pro-Bitcoin Candidate Javier Milei Wins Argentina Primary Election

Pro-Bitcoin Candidate Javier Milei Wins Argentina Primary Election

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

United Nations Support Mission in Libya (UNSMIL) announces the establishment of the Advisory Committee

United Nations Support Mission in Libya (UNSMIL) announces the establishment of the Advisory Committee

4 months ago
Navigating South Africa’s NHI Bill: The Rise of Investment Migration for Health Security and Global Mobility

Navigating South Africa’s NHI Bill: The Rise of Investment Migration for Health Security and Global Mobility

12 months ago
Highest-paid athletes of African descent in 2025

Highest-paid athletes of African descent in 2025

4 days ago
Lagos court remands ‘soldier’ for alleged drug trafficking | The Guardian Nigeria News

Lagos court remands ‘soldier’ for alleged drug trafficking | The Guardian Nigeria News

2 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.