Tuesday, May 20, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Using AI as a guide for the better manufacturing of perovskite solar cells

Simon Osuji by Simon Osuji
November 22, 2023
in Artificial Intelligence
0
Using AI as a guide for the better manufacturing of perovskite solar cells
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


AI for perovskite solar cells: Key to better manufacturing
Assisted by AI methods, researchers are striving to improve the manufacturing processes for highly efficient perovskite solar cells. Credit: Amadeus Bramsiepe, KIT

Tandem solar cells based on perovskite semiconductors convert sunlight to electricity more efficiently than conventional silicon solar cells. In order to make this technology ready for the market, further improvements with regard to stability and manufacturing processes are required.

Related posts

Who Even Is a Criminal Now?

Who Even Is a Criminal Now?

May 20, 2025
Nvidia RTX 5060: Specs, Release Date, Pricing, Features

Nvidia RTX 5060: Specs, Release Date, Pricing, Features

May 20, 2025

Researchers of Karlsruhe Institute of Technology (KIT) and of two Helmholtz platforms—Helmholtz Imaging at the German Cancer Research Center (DKFZ) and Helmholtz AI—have succeeded in finding a way to predict the quality of the perovskite layers and consequently that of the resulting solar cells. Assisted by machine learning and new methods in artificial intelligence (AI), it is possible to assess their quality from variations in light emission already in the manufacturing process.

The results, which can be used to derive better manufacturing processes, have been published in Advanced Materials.

Perovskite tandem solar cells combine a perovskite solar cell with a conventional solar cell, for example, based on silicon. These cells are considered a next-generation technology: They boast an efficiency of currently more than 33%, which is much higher than that of conventional silicon solar cells. Moreover, they use inexpensive raw materials and are easily manufactured. To achieve this level of efficiency, an extremely thin high-grade perovskite layer, whose thickness is only a fraction of that of human hair, has to be produced.

“Manufacturing these high-grade, multi-crystalline thin layers without any deficiencies or holes using low-cost and scalable methods is one of the biggest challenges,” says tenure-track professor Ulrich W. Paetzold who conducts research at the Institute of Microstructure Technology and the Light Technology Institute of KIT.

Even under apparently perfect lab conditions, there may be unknown factors that cause variations in semiconductor layer quality. “This drawback eventually prevents a quick start of industrial-scale production of these highly efficient solar cells, which are needed so badly for the energy turnaround.”

AI finds hidden signs of effective coating

To find the factors that influence coating, an interdisciplinary team consisting of the perovskite solar cell experts of KIT has joined forces with specialists for Machine Learning and Explainable Artificial Intelligence (XAI) of Helmholtz Imaging and Helmholtz AI at the DKFZ in Heidelberg. The researchers developed AI methods that train and analyze neural networks using a huge dataset. This dataset includes video recordings that show the photoluminescence of the thin perovskite layers during the manufacturing process.

Photoluminescence refers to the radiant emission of the semiconductor layers that have been excited by an external light source. “Since even experts could not see anything particular on the thin layers, the idea was born to train an AI system for machine learning (Deep Learning) to detect hidden signs of good or poor coating from the millions of data items on the videos,” Lukas Klein and Sebastian Ziegler from Helmholtz Imaging at the DKFZ explain.

To filter and analyze the widely scattered indications output by the Deep Learning AI system, the researchers subsequently relied on methods of Explainable Artificial Intelligence.

A blueprint for follow-up research

The researchers found out experimentally that the photoluminescence varies during production and that this phenomenon has an influence on the coating quality. “Key to our work was the targeted use of XAI methods to see which factors have to be changed to obtain a high-grade solar cell,” Klein and Ziegler say.

This is not the usual approach. In most cases, XAI is only used as a kind of guardrail to avoid mistakes when building AI models. “This is a change of paradigm: Gaining highly relevant insights in materials science in such a systematic way is a totally new experience.”

It was indeed the conclusion drawn from the photoluminescence variation that enabled the researchers to take the next step. After the neural networks had been trained accordingly, the AI was able to predict whether each solar cell would achieve a low or a high level of efficiency based on which variation of light emission occurred at what point in the manufacturing process.

“These are extremely exciting results,” says Ulrich W. Paetzold. “Thanks to the combined use of AI, we have a solid clue and know which parameters need to be changed in the first place to improve production. Now we are able to conduct our experiments in a more targeted way and are no longer forced to look blindfolded for the needle in a haystack. This is a blueprint for follow-up research that also applies to many other aspects of energy research and materials science.”

More information:
Lukas Klein et al, Discovering Process Dynamics for Scalable Perovskite Solar Cell Manufacturing with Explainable AI, Advanced Materials (2023). DOI: 10.1002/adma.202307160

Provided by
Karlsruhe Institute of Technology

Citation:
Using AI as a guide for the better manufacturing of perovskite solar cells (2023, November 22)
retrieved 22 November 2023
from https://techxplore.com/news/2023-11-ai-perovskite-solar-cells.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Plowing ahead: John Deere’s crop of success in turbulent markets

Next Post

Gold Price Surpasses $2000, With Rally to $2500 In-Play

Next Post
Gold Price Forecast to Reach $2000: Here’s When

Gold Price Surpasses $2000, With Rally to $2500 In-Play

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

How High Could It Go?

How High Could It Go?

5 months ago
OPEC+ set to hold monitoring meeting in early February

OPEC+ set to hold monitoring meeting in early February

1 year ago
President Akufo-Addo Launches 5G Technology, Ushering in a New Era of Digital Transformation

President Akufo-Addo Launches 5G Technology, Ushering in a New Era of Digital Transformation

7 months ago
Smuggled Gold Fuels War in Sudan, U.N. Says

Smuggled Gold Fuels War in Sudan, U.N. Says

1 year ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.