Saturday, May 17, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

These Startups Are Building Advanced AI Models Without Data Centers

Simon Osuji by Simon Osuji
May 2, 2025
in Artificial Intelligence
0
These Startups Are Building Advanced AI Models Without Data Centers
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Researchers have trained a new kind of large language model (LLM) using GPUs dotted across the world and fed private as well as public data—a move that suggests that the dominant way of building artificial intelligence could be disrupted.

Flower AI and Vana, two startups pursuing unconventional approaches to building AI, worked together to create the new model, called Collective-1.

Flower created techniques that allow training to be spread across hundreds of computers connected over the internet. The company’s technology is already used by some firms to train AI models without needing to pool compute resources or data. Vana provided sources of data including private messages from X, Reddit, and Telegram.

Collective-1 is small by modern standards, with 7 billion parameters—values that combine to give the model its abilities—compared to hundreds of billions for today’s most advanced models, such as those that power programs like ChatGPT, Claude, and Gemini.

Nic Lane, a computer scientist at the University of Cambridge and cofounder of Flower AI, says that the distributed approach promises to scale far beyond the size of Collective-1. Lane adds that Flower AI is partway through training a model with 30 billion parameters using conventional data, and plans to train another model with 100 billion parameters—close to the size offered by industry leaders—later this year. “It could really change the way everyone thinks about AI, so we’re chasing this pretty hard,” Lane says. He says the startup is also incorporating images and audio into training to create multimodal models.

Distributed model-building could also unsettle the power dynamics that have shaped the AI industry.

AI companies currently build their models by combining vast amounts of training data with huge quantities of compute concentrated inside data centers stuffed with advanced GPUs that are networked together using super-fast fiber-optic cables. They also rely heavily on datasets created by scraping publicly accessible—although sometimes copyrighted—material, including websites and books.

The approach means that only the richest companies, and nations with access to large quantities of the most powerful chips, can feasibly develop the most powerful and valuable models. Even open source models, like Meta’s Llama and R1 from DeepSeek, are built by companies with access to large data centers. Distributed approaches could make it possible for smaller companies and universities to build advanced AI by pooling disparate resources together. Or it could allow countries that lack conventional infrastructure to network together several data centers to build a more powerful model.

Lane believes that the AI industry will increasingly look towards new methods that allow training to break out of individual data centers. The distributed approach “allows you to scale compute much more elegantly than the data center model,” he says.

Helen Toner, an expert on AI governance at the Center for Security and Emerging Technology, says Flower AI’s approach is “interesting and potentially very relevant” to AI competition and governance. “It will probably continue to struggle to keep up with the frontier, but could be an interesting fast-follower approach,” Toner says.

Divide and Conquer

Distributed AI training involves rethinking the way calculations used to build powerful AI systems are divided up. Creating an LLM involves feeding huge amounts of text into a model that adjusts its parameters in order to produce useful responses to a prompt. Inside a data center the training process is divided up so that parts can be run on different GPUs, and then periodically consolidated into a single, master model.

The new approach allows the work normally done inside a large data center to be performed on hardware that may be many miles away and connected over a relatively slow or variable internet connection.



Source link

Related posts

Is Elon Musk Really Stepping Back from DOGE?

Is Elon Musk Really Stepping Back from DOGE?

May 17, 2025
How to Reduce Browser Battery Drain in Chrome, Edge, and Opera

How to Reduce Browser Battery Drain in Chrome, Edge, and Opera

May 17, 2025
Previous Post

Air India seeks $600mn in aid if Pakistan airspace ban persists for a year: Report

Next Post

Top 3 Cryptocurrencies That May Rally This Weekend

Next Post
Top 3 Cryptocurrencies That May Rally This Weekend

Top 3 Cryptocurrencies That May Rally This Weekend

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Auction reform needed to make UK clean energy superpower

Auction reform needed to make UK clean energy superpower

8 months ago
A Challenging Retirement Plan Mission: Not Impossible

A Challenging Retirement Plan Mission: Not Impossible

1 year ago
Somalia aims to develop policy to accelerate the deployment of optical fibre

Somalia aims to develop policy to accelerate the deployment of optical fibre

6 months ago
What Ethiopia, Nigeria, Gambia Can Teach the U.S. About Elections

What Ethiopia, Nigeria, Gambia Can Teach the U.S. About Elections

7 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.