• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

Similarities between human and AI learning offer intuitive design insights

Simon Osuji by Simon Osuji
September 4, 2025
in Artificial Intelligence
0
Similarities between human and AI learning offer intuitive design insights
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


AI
Credit: Unsplash/CC0 Public Domain

New research has found similarities in how humans and artificial intelligence integrate two types of learning, offering new insights about how people learn as well as how to develop more intuitive AI tools.

Related posts

Keychron Q16 HE 8K Review: A Ceramic Disappointment

Keychron Q16 HE 8K Review: A Ceramic Disappointment

January 30, 2026
After Minneapolis, Tech CEOs Are Struggling to Stay Silent

After Minneapolis, Tech CEOs Are Struggling to Stay Silent

January 30, 2026

The study is published in the Proceedings of the National Academy of Sciences.

Led by Jake Russin, a postdoctoral research associate in computer science at Brown University, the study found by training an AI system that flexible and incremental learning modes interact similarly to working memory and long-term memory in humans.

“These results help explain why a human looks like a rule-based learner in some circumstances and an incremental learner in others,” Russin said. “They also suggest something about what the newest AI systems have in common with the human brain.”

Russin holds a joint appointment in the laboratories of Michael Frank, a professor of cognitive and psychological sciences and director of the Center for Computational Brain Science at Brown’s Carney Institute for Brain Science, and Ellie Pavlick, an associate professor of computer science who leads the AI Research Institute on Interaction for AI Assistants at Brown.

Depending on the task, humans acquire new information in one of two ways. For some tasks, such as learning the rules of tic-tac-toe, “in-context” learning allows people to figure out the rules quickly after a few examples. In other instances, incremental learning builds on information to improve understanding over time—such as the slow, sustained practice involved in learning to play a song on the piano.

While researchers knew that humans and AI integrate both forms of learning, it wasn’t clear how the two learning types work together. Over the course of the research team’s ongoing collaboration, Russin—whose work bridges machine learning and computational neuroscience—developed a theory that the dynamic might be similar to the interplay of human working memory and long-term memory.

To test this theory, Russin used “meta-learning”—a type of training that helps AI systems learn about the act of learning itself—to tease out key properties of the two learning types. The experiments revealed that the AI system’s ability to perform in-context learning emerged after it meta-learned through multiple examples.

One experiment, adapted from an experiment in humans, tested for in-context learning by challenging the AI to recombine similar ideas to deal with new situations. If taught about a list of colors and a list of animals, could the AI correctly identify a combination of color and animal (e.g. a green giraffe) it had not seen together previously? After the AI meta-learned by being challenged to 12,000 similar tasks, it gained the ability to successfully identify new combinations of colors and animals.

The results suggest that for both humans and AI, quicker, flexible in-context learning arises after a certain amount of incremental learning has taken place.

“At the first board game, it takes you a while to figure out how to play,” Pavlick said. “By the time you learn your hundredth board game, you can pick up the rules of play quickly, even if you’ve never seen that particular game before.”

The team also found trade-offs, including between learning retention and flexibility: Similar to humans, the harder it is for AI to correctly complete a task, the more likely it will remember how to perform it in the future. According to Frank, who has studied this paradox in humans, this is because errors cue the brain to update information stored in long-term memory, whereas error-free actions learned in context increase flexibility but don’t engage long-term memory in the same way.

For Frank, who specializes in building biologically inspired computational models to understand human learning and decision-making, the team’s work showed how analyzing strengths and weaknesses of different learning strategies in an artificial neural network can offer new insights about the human brain.

“Our results hold reliably across multiple tasks and bring together disparate aspects of human learning that neuroscientists hadn’t grouped together until now,” Frank said.

The work also suggests important considerations for developing intuitive and trustworthy AI tools, particularly in sensitive domains such as mental health.

“To have helpful and trustworthy AI assistants, human and AI cognition need to be aware of how each works and the extent that they are different and the same,” Pavlick said. “These findings are a great first step.”

More information:
Jacob Russin et al, Parallel trade-offs in human cognition and neural networks: The dynamic interplay between in-context and in-weight learning, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2510270122

Provided by
Brown University

Citation:
Similarities between human and AI learning offer intuitive design insights (2025, September 4)
retrieved 4 September 2025
from https://techxplore.com/news/2025-09-similarities-human-ai-intuitive-insights.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Morocco inaugurates 13MW floating solar plant to power Tangier Med Port

Next Post

Standard Bank Named One Of The World’s Most Trusted Companies By Newsweek

Next Post
Standard Bank Named One Of The World’s Most Trusted Companies By Newsweek

Standard Bank Named One Of The World’s Most Trusted Companies By Newsweek

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Bank Nizwa’s senior executives excel in prestigious Wharton University program

Bank Nizwa’s senior executives excel in prestigious Wharton University program

2 years ago
Large Language Models Struggle With Reading Clocks

Large Language Models Struggle With Reading Clocks

3 months ago
Africa’s oldest president survives court challenge, set to run for 8th term at 92

Africa’s oldest president survives court challenge, set to run for 8th term at 92

5 months ago
Machine-Learning Tool Easily Spots ChatGPT’s Writing

Machine-Learning Tool Easily Spots ChatGPT’s Writing

2 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.