• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

Road features that predict crash sites identified in new machine-learning model

Simon Osuji by Simon Osuji
February 13, 2024
in Artificial Intelligence
0
Road features that predict crash sites identified in new machine-learning model
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


car crash
Credit: Pixabay/CC0 Public Domain

Issues such as abrupt changes in speed limits and incomplete lane markings are among the most influential factors that can predict road crashes, finds new research by University of Massachusetts Amherst engineers. The study then used machine learning to predict which roads may be the most dangerous based on these features.

Related posts

Google’s AI Overviews Can Scam You. Here’s How to Stay Safe

Google’s AI Overviews Can Scam You. Here’s How to Stay Safe

February 15, 2026
The Fight Over US Climate Rules Is Just Beginning

The Fight Over US Climate Rules Is Just Beginning

February 15, 2026

Published in the journal Transportation Research Record, the study was a collaboration between UMass Amherst civil and environmental engineers Jimi Oke, assistant professor; Eleni Christofa, associate professor; and Simos Gerasimidis, associate professor; and civil engineers from Egnatia Odos, a publicly owned engineering firm in Greece.

The most influential features included road design issues (such as changes in speed limits that are too abrupt or guardrail issues), pavement damage (cracks that stretch across the road and webbed cracking referred to as “alligator” cracking), and incomplete signage and road markings.

To identify these features, the researchers used a dataset of 9,300 miles of roads across 7,000 locations in Greece. “Egnatia Odos had the real data from every highway in the country, which is very hard to find,” says Gerasimidis.

Oke, who, with Christofa, is also a faculty member in the UMass Transportation Center, suspects the findings may stretch well beyond Greek borders.

“The problem itself is globally applicable—not just to Greece, but to the United States,” he says. Differences in road designs may influence how variables rank, but given the intuitive nature of the features, he suspects that the features themselves would be important regardless of location.

“The indicators themselves are universal types of observations, so there’s no reason to believe that they wouldn’t be generalizable to the US.” He also notes that this approach can be readily deployed on new data from other locations as well.

Importantly, it puts decades of road data to good use: “We have all these measures that we can use to predict the crash risk on our roads, and that is a big step in improving safety outcomes for everyone,” he says.

There are many future applications for this work. For starters, it will help future research home in on the important features to study. “We had 60-some-odd indicators. But now, we can just really focus our money on capturing the ones that we need,” says Oke. “One could dig deeper to understand how a certain feature actually could contribute to crashes,” and then measure to see if fixing the issue would actively reduce the number of incidents that occur.

He also envisions how this could be used to train AI for real-time road condition monitoring. “You could train models that can identify these features from images and then predict the crash risk as a first step towards an automated monitoring system and also provide recommendations on what we should fix,” he says.

Gerasimidis adds that this is an exciting, real-world application of AI. “This is a big initiative we are doing here, and it has specific engineering outcomes,” he says.

“The purpose was to do this AI study and bring it up to [Greek] officials to say ‘look what we can do.’ It is very difficult to use AI and come up with specific results that could be implemented, and I think this study is one of them. It is now up to the Greek officials to utilize these new tools to mitigate the huge problem of car crash fatalities. We are very eager to see our findings lead to improving this problem.”

“This work could serve as the roadmap for future collaborations between academics and engineers on other topics,” he adds. “The mathematical tools along with real data consist of a truly powerful combination when looking at societal problems.”

More information:
Dimitrios Sarigiannis et al, Feature Engineering and Decision Trees for Predicting High Crash-Risk Locations Using Roadway Indicators, Transportation Research Record: Journal of the Transportation Research Board (2024). DOI: 10.1177/03611981231217497

Provided by
University of Massachusetts Amherst

Citation:
Road features that predict crash sites identified in new machine-learning model (2024, February 13)
retrieved 13 February 2024
from https://techxplore.com/news/2024-02-road-features-sites-machine.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Solana Weekly Price Prediction; SOL Eyes Further Upside

Next Post

It takes Europe at least a year to fill a Ukrainian order for artillery shells

Next Post
It takes Europe at least a year to fill a Ukrainian order for artillery shells

It takes Europe at least a year to fill a Ukrainian order for artillery shells

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

South Africa’s Ukraine stance must go beyond Trump contempt

South Africa’s Ukraine stance must go beyond Trump contempt

10 months ago
Kevin McCarthy removed as US House Speaker

Kevin McCarthy removed as US House Speaker

2 years ago
Appointment of the Board of the Seychelles Revenue Commission

Appointment of the Board of the Seychelles Revenue Commission

2 years ago
Car Subscription Features Raise Your Risk of Government Surveillance, Police Records Show

Car Subscription Features Raise Your Risk of Government Surveillance, Police Records Show

10 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.