Friday, May 16, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Predicting the energy balance algorithmically

Simon Osuji by Simon Osuji
January 25, 2024
in Artificial Intelligence
0
Predicting the energy balance algorithmically
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


electricity demand
Credit: Unsplash/CC0 Public Domain

A team in Turkey has tested different machine-learning algorithms for predicting electricity demand from different sources. They trained the algorithms on electricity demand data for the period 2000–2022 and used them to successfully make predictions for 2023 with differing degrees of accuracy.

Related posts

Alibaba’s ZeroSearch method uses simulated search results to slash LLM training costs

Alibaba’s ZeroSearch method uses simulated search results to slash LLM training costs

May 16, 2025
Can the US really enforce a global AI chip ban?

Can the US really enforce a global AI chip ban?

May 16, 2025

The researchers tested the predictive power of long short-term memory (LSTM), artificial neural network (ANN), linear regression (LR), support vector regression (SVR), decision tree regression (DTR), random forest regression (RFR), and eXtreme gradient boosting (XGBoost) and demonstrated that LSTM is the most accurate. Such an algorithm could be used to model energy usage and production for long-term electricity planning around the world.

Writing in the International Journal of Oil, Gas and Coal Technology, Mehmet Hakan Özdemir and Batin Latif Aylak of the Turkish-German University in Istanbul, Murat İnce of Isparta University of Applied Sciences, Isparta, and Okan Oral of Akdeniz University in Antalya, Turkey, suggest that understanding supply and demand in terms of the different non-renewable and renewable energy sources is critical at this point in human history.

Given that non-renewable sources such as fossil fuels are finite and irreplaceable, renewable sources such as wind, solar, hydro, geothermal, and biogas which can be replenished are high on the generation agenda. Machine learning, with its ability to discern intricate relationships and patterns from large bodies of data, offers a powerful and flexible approach to prediction.

In contrast to traditional statistical methods, machine learning algorithms, trained on appropriate data sets, can consider the entirety of the available data and thus discern conclusions about complex interactions that traditional analytical methods cannot reach.

Machine learning could thus help us in our energy policy decisions and steer the electricity generation industry towards a path to a more sustainable future. The insights gleaned from the research not only inform decision-makers but also highlight just how transformative machine learning algorithms can be in redefining how we solve problems of this kind.

More information:
Mehmet Hakan Özdemir et al, Predicting world electricity generation by sources using different machine learning algorithms, International Journal of Oil, Gas and Coal Technology (2024). DOI: 10.1504/IJOGCT.2024.136028

Citation:
Predicting the energy balance algorithmically (2024, January 25)
retrieved 25 January 2024
from https://techxplore.com/news/2024-01-energy-algorithmically.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Kenyan Man Among 4 Arrested Over Fraud in Malaysia

Next Post

Looser gun laws could deepen Nigeria’s security crisis

Next Post
Looser gun laws could deepen Nigeria’s security crisis

Looser gun laws could deepen Nigeria’s security crisis

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Just $140 In DOGE Could Have Made You $1 Million

Just $140 In DOGE Could Have Made You $1 Million

4 months ago
Albania selects Presight for nationwide AI-powered smart city project

Albania selects Presight for nationwide AI-powered smart city project

3 months ago
Building AI guardrails should be part of the process

Building AI guardrails should be part of the process

1 year ago
Wind.app makes DeFi accessible to the average consumer

Wind.app makes DeFi accessible to the average consumer

1 year ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.