Monday, November 10, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

New neural framework enhances reconstruction of high-resolution images

Simon Osuji by Simon Osuji
September 6, 2024
in Artificial Intelligence
0
New neural framework enhances reconstruction of high-resolution images
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter


New neural framework enhances reconstruction of high-resolution images
Neural phase retrieval (NeuPh) employs a CNN-based encoder to learn measurement-specific information and encode them into a latent-space representation. The MLP decoder reconstructs the phase values at specific locations with an increased spatial resolution by synthesizing local conditional information from the corresponding latent vectors. Credit: H. Wang et al., doi 10.1117/1.APN.3.5.056005.

Deep learning (DL) has significantly transformed the field of computational imaging, offering powerful solutions to enhance performance and address a variety of challenges. Traditional methods often rely on discrete pixel representations, which limit resolution and fail to capture the continuous and multiscale nature of physical objects. Recent research from Boston University (BU) presents a novel approach to overcome these limitations.

Related posts

Apple Pulls China’s Top Gay Dating Apps After Government Order

Apple Pulls China’s Top Gay Dating Apps After Government Order

November 10, 2025
Can you really talk to the dead using AI? We tried out ‘deathbots’ so you don’t have to

Can you really talk to the dead using AI? We tried out ‘deathbots’ so you don’t have to

November 9, 2025

As reported in Advanced Photonics Nexus, researchers from BU’s Computational Imaging Systems Lab have introduced a local conditional neural field (LCNF) network, which they use to address the problem. Their scalable and generalizable LCNF system is known as “neural phase retrieval”—”NeuPh” for short.

NeuPh leverages advanced DL techniques to reconstruct high-resolution phase information from low-resolution measurements. This method employs a convolutional neural network (CNN)-based encoder to compress captured images into a compact latent-space representation.

Then, this is followed by a multilayer perceptron (MLP)-based decoder that reconstructs high-resolution phase values, effectively capturing multiscale object information. By doing so, NeuPh provides robust resolution enhancement and outperforms both traditional physical model-based methods and current state-of-the-art neural networks.

The reported results highlight NeuPh’s ability to apply continuous and smooth object priors to the reconstruction, showcasing more accurate results compared to existing models. Using experimental datasets, the researchers demonstrated that NeuPh can accurately reconstruct intricate subcellular structures, eliminate common artifacts such as residual phase unwrapping errors, noise, and background artifacts, and maintain high accuracy even with limited or imperfect training data.

NeuPh also exhibits strong generalization capabilities. It consistently performs high-resolution reconstructions when trained with very limited data or under different experimental conditions. This adaptability is further enhanced by training on physics-model-simulated datasets, which allows NeuPh to generalize well to real experimental data.

According to lead researcher Hao Wang, “We also explored a hybrid training strategy combining both experimental and simulated datasets, emphasizing the importance of aligning the data distribution between simulations and real experiments to ensure effective network training.”

Wang adds, “NeuPh facilitates ‘super-resolution’ reconstruction, surpassing the diffraction limit of input measurements. By utilizing ‘super-resolved’ latent information during training, NeuPh achieves scalable and generalizable high-resolution image reconstruction from low-resolution intensity images, applicable to a wide range of objects with varying spatial scales and resolutions.”

As a scalable, robust, accurate, and generalizable solution for phase retrieval, NeuPh opens new possibilities for DL-based computational imaging techniques.

More information:
Hao Wang et al, NeuPh: scalable and generalizable neural phase retrieval with local conditional neural fields, Advanced Photonics Nexus (2024). DOI: 10.1117/1.APN.3.5.056005

Citation:
New neural framework enhances reconstruction of high-resolution images (2024, September 5)
retrieved 5 September 2024
from https://techxplore.com/news/2024-09-neural-framework-reconstruction-high-resolution.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Hon. Okello Addresses 2nd Indonesia-Africa Forum 2024 in Bali

Next Post

Changpeng Zhao Binance Exit Revealed to be a Lifetime Ban

Next Post
Changpeng Zhao Binance Exit Revealed to be a Lifetime Ban

Changpeng Zhao Binance Exit Revealed to be a Lifetime Ban

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Statement by United Nations Support Mission in Libya (UNSMIL) welcoming the continuation of municipal council elections

Statement by United Nations Support Mission in Libya (UNSMIL) welcoming the continuation of municipal council elections

3 weeks ago
Banking sector pushes TASI up 125 points, crossing 12,000 mark again

Banking sector pushes TASI up 125 points, crossing 12,000 mark again

1 year ago
UN chief cites the promise and perils of dizzying new technology as ‘AI for Good’ conference opens

UN chief cites the promise and perils of dizzying new technology as ‘AI for Good’ conference opens

1 year ago
Saildrone Bags $60M Investment for AI-Powered Maritime Security in Europe

Saildrone Bags $60M Investment for AI-Powered Maritime Security in Europe

6 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.