• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

New method for energy-aware deployment planning of delivery drones

Simon Osuji by Simon Osuji
May 20, 2025
in Artificial Intelligence
0
New method for energy-aware deployment planning of delivery drones
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


The least confident delivery drone gets the job
Overview of decentralized learning-based deployment strategy and evaluation environment. Credit: arXiv (2025). DOI: 10.48550/arxiv.2504.08585

In the future, autonomous delivery drones could independently assess whether their remaining battery charge is sufficient for upcoming deliveries. A team of researchers from Technical University of Darmstadt and the University of Sheffield, in collaboration with the French National Institute for Research in Digital Science and Technology (INRIA) and industry partner Ingeniarius Ltd, has developed a new method for energy-aware deployment planning.

Related posts

Insta360 Ace Pro 2 Xplorer Grip Pro Kit Review: An Even Better Action Camera

Insta360 Ace Pro 2 Xplorer Grip Pro Kit Review: An Even Better Action Camera

February 7, 2026
Gear News of the Week: Google’s Pixel 10a Arrives Soon, and Valve Delays Its Steam Hardware

Gear News of the Week: Google’s Pixel 10a Arrives Soon, and Valve Delays Its Steam Hardware

February 7, 2026

The approach enables each drone to learn what orders it is capable of fulfilling even when not knowing its own battery health. It is shown to reduce delivery times and increase the number of processed orders compared to conventional approaches.

At a fulfillment center, delivery drones assign tasks among themselves using an auction-based system. Each drone considers its current battery level and evaluates whether it can complete the task. If so, it places a bid that reflects its confidence. The drone that wins the auction attempts the task and uses the outcome to refine its understanding of its true capabilities, which are influenced by unknown factors such as the long-term health of its battery.

Counterintuitively, selecting the least confident bidder as the auction winner proved the most effective system. This approach enabled drones to learn more accurately where their performance limits lie and promoted smarter use of resources by deploying drones whose capabilities were well-matched to the task at hand.

The researchers, led by Professor Roderich Groß from the Department of Computer Science at TU Darmstadt, tested their method in a specially developed multi-agent simulator over a period of eight weeks. The results showed that the learning-based approach achieved significantly higher delivery rates and shorter delivery times compared to conventional threshold-based strategies.

In an extended version, drones were even able to take on tasks that they could complete only once sufficiently recharged, enabling a forward-looking allocation of resources. “This work shows how online learning can help robots cope with real-world challenges, such as operating without full knowledge of their true capabilities,” said Dr. Mohamed Talamali from the University of Sheffield.

The approach can also be used to efficiently manage heterogeneous fleets in which the drones differ, for example, due to manufacturing tolerances or individual wear and tear. This paves the way for autonomously operating delivery systems with higher reliability and optimized energy usage. “Such autonomous delivery drones could also operate across multiple fulfillment centers, further reducing delivery times and costs,” said Professor Groß.

The study, “Ready, Bid, Go! On-Demand Delivery Using Fleets of Drones with Unknown, Heterogeneous Energy Storage Constraints,” will be presented on 21 May at the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025) in Detroit, U.S., and was selected as a finalist for the Best Paper Award from more than 1,000 submissions. The work is available on the arXiv preprint server.

More information:
Mohamed S. Talamali et al, Ready, Bid, Go! On-Demand Delivery Using Fleets of Drones with Unknown, Heterogeneous Energy Storage Constraints, arXiv (2025). DOI: 10.48550/arxiv.2504.08585

Journal information:
arXiv

Provided by
Technische Universitat Darmstadt

Citation:
New method for energy-aware deployment planning of delivery drones (2025, May 20)
retrieved 20 May 2025
from https://techxplore.com/news/2025-05-method-energy-aware-deployment-delivery.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

TotalEnergies to begin new offshore drilling in South Africa next year

Next Post

Media Says Trump Prosecuting House Dem Is No Big Deal

Next Post
Media Says Trump Prosecuting House Dem Is No Big Deal

Media Says Trump Prosecuting House Dem Is No Big Deal

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Meta pauses teen access to AI characters ahead of new version

Meta pauses teen access to AI characters ahead of new version

2 weeks ago
Kenya Airways suspends DR Congo flights in protest over detained crew

Kenya Airways suspends DR Congo flights in protest over detained crew

2 years ago
Politicians, top celebrities attends Raila, Ida’s anniversary

Politicians, top celebrities attends Raila, Ida’s anniversary

2 years ago
FABMISR expands national footprint with 4 new branches across strategic locations

FABMISR expands national footprint with 4 new branches across strategic locations

9 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.