Tuesday, June 3, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

New method could reduce errors in computational imaging

Simon Osuji by Simon Osuji
July 26, 2024
in Artificial Intelligence
0
New method could reduce errors in computational imaging
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Deep learning models can be trained with limited data
Visual comparison of matched, mismatched and adapted (proposed) deep learning models in PnP-ADMM for the phase retrieval problem. The mismatched model is trained on pathology images instead of faces (matched). The proposed method applies domain adaptation to the mismatched model to restore a high-quality image, comparable in quality to the results achieved using the matched model, with fewer than 1% of the number of images required for training. Credit: Kamilov lab

Deep learning models, such as those used in medical imaging to help detect disease or abnormalities, must be trained with a lot of data. However, often there isn’t enough data available to train these models, or the data is too diverse.

Related posts

“Mario Kart World” Devs Broke Their Own Rule on Who Gets to Drive

“Mario Kart World” Devs Broke Their Own Rule on Who Gets to Drive

June 3, 2025
AI detects contaminated construction wood with 91% accuracy

AI detects contaminated construction wood with 91% accuracy

June 3, 2025

Ulugbek Kamilov, associate professor of computer science and engineering and of electrical and systems engineering in the McKelvey School of Engineering at Washington University in St. Louis, along with Shirin Shoushtari, Jiaming Liu and Edward Chandler, doctoral students in his group, have developed a method to get around this common problem in image reconstruction.

The team will present the results of the research this month at the International Conference on Machine Learning (ICML 2024) in Vienna, Austria.

For example, MRI data used to train deep learning models could come from different vendors, hospitals, machines, patients or body parts imaged. A model trained on one type of data could introduce errors when applied on other data. To avoid those errors, the team adopted the widely used deep learning approach known as Plug-and-Play Priors, accounted for the shift in the data with which the model was trained and adapted the model to a new incoming set of data.






“With our method, it doesn’t matter if you don’t have a lot of training data,” Shoushtari said. “Our method enables adaptation to deep learning models using a small set of training data, no matter what hospital, what machine or what body parts the images come from.

“What is significant about the domain adaptation strategy is that we can reduce the errors we fact in imaging due to a limited set of data,” Shoushtari said. “This could help us apply deep learning to problems that were previously deemed impossible due to the data requirements.”

One proposed use for this method would be in acquiring data from MRI, which requires patients to lie still for long periods of time. Any movement by the patient leads to errors.

“We have considered acquiring the data from the MRI in a shorter time,” Shoushtari said. “While shorter scans typically lead to lower quality images, our method can be used to computationally increase image quality as if the patient was in the machine for a longer time. The key innovation in our new approach is that it requires only tens of images to adapt an existing MRI model to new data.”

The method is also applicable beyond radiology, and the team is collaborating with other colleagues to adopt the method to scientific imaging, microscopic imaging and other applications in which data can be represented as an image.

More information:
Shoushtari S, Liu J, Chandler EP, Asif MS, Kamilov US. Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence Analysis. International Conference on Machine Learning, July 21–27, 2024. icml.cc/virtual/2024/poster/34765

The source code is available on GitHub: github.com/wustl-cig/MMPnPADMM

Provided by
Washington University in St. Louis

Citation:
Deep learning models can be trained with limited data: New method could reduce errors in computational imaging (2024, July 26)
retrieved 26 July 2024
from https://techxplore.com/news/2024-07-deep-limited-method-errors-imaging.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

US Air Force’s ULTRA Spy Drone Flies for Three Days Straight in Recent Trial

Next Post

Indonesia’s Palm Oil Market Potential in Africa: Insights from Angola

Next Post
Indonesia’s Palm Oil Market Potential in Africa: Insights from Angola

Indonesia’s Palm Oil Market Potential in Africa: Insights from Angola

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Thales Partners Febus Optics for Undersea Infrastructure Surveillance

Thales Partners Febus Optics for Undersea Infrastructure Surveillance

7 months ago
Is space-based solar power the world’s next energy frontier?

Is space-based solar power the world’s next energy frontier?

1 year ago
Communities Taking A Sting Out Of Poaching With Alternative Livelihoods

Communities Taking A Sting Out Of Poaching With Alternative Livelihoods

2 years ago
Beware – Reserve Force recruitment scam

Beware – Reserve Force recruitment scam

1 year ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.