Saturday, May 17, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Innovations in depth from focus/defocus pave the way to more capable computer vision systems

Simon Osuji by Simon Osuji
February 9, 2024
in Artificial Intelligence
0
Innovations in depth from focus/defocus pave the way to more capable computer vision systems
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Innovations in depth from focus/defocus pave the way to more capable computer vision systems
The proposed method takes as input the focal stack and camera settings, and establishes a cost volume based on a lens defocus model. This design enables depth estimation with different camera settings at training and test times. Credit: Yuki Fujimura

In several applications of computer vision, such as augmented reality and self-driving cars, estimating the distance between objects and the camera is an essential task. Depth from focus/defocus is one of the techniques that achieve such a process using the blur in the images as a clue. Depth from focus/defocus usually requires a stack of images of the same scene taken with different focus distances, a technique known as “focal stack.”

Related posts

Coinbase Will Reimburse Customers Up to $400 Million After Data Breach

Coinbase Will Reimburse Customers Up to $400 Million After Data Breach

May 17, 2025
Is Elon Musk Really Stepping Back from DOGE?

Is Elon Musk Really Stepping Back from DOGE?

May 17, 2025

Over the past decade or so, scientists have proposed many different methods for depth from focus/defocus, most of which can be divided into two categories. The first category includes model-based methods, which use mathematical and optics models to estimate scene depth based on sharpness or blur. The main problem with such methods, however, is that they fail for texture-less surfaces, which look virtually the same across the entire focal stack.

The second category includes learning-based methods, which can be trained to perform depth from focus/defocus efficiently, even for texture-less surfaces. However, these approaches fail if the camera settings used for an input focal stack are different from those used in the training dataset.

Overcoming these limitations now, a team of researchers from Japan has developed an innovative method for depth from focus/defocus that simultaneously addresses the abovementioned issues. Their study, published in the International Journal of Computer Vision, was led by Yasuhiro Mukaigawa and Yuki Fujimura from Nara Institute of Science and Technology (NAIST), Japan.

The proposed technique, dubbed “deep depth from focal stack” (DDFS), combines model-based depth estimation with a learning framework to get the best of both worlds. Inspired by a strategy used in stereo vision, DDFS involves establishing a “cost volume” based on the input focal stack, the camera settings, and a lens defocus model.

Simply put, the cost volume represents a set of depth hypotheses—potential depth values for each pixel—and an associated cost value calculated on the basis of consistency between images in the focal stack. “The cost volume imposes a constraint between the defocus images and scene depth, serving as an intermediate representation that enables depth estimation with different camera settings at training and test times,” explains Mukaigawa.

The DDFS method also employs an encoder–decoder network, a commonly used machine learning architecture. This network estimates the scene depth progressively in a coarse-to-fine fashion, using “cost aggregation” at each stage for learning localized structures in the images adaptively.

The researchers compared the performance of DDFS with that of other state-of-the-art depth from focus/defocus methods. Notably, the proposed approach outperformed most methods in various metrics for several image datasets. Additional experiments on focal stacks captured with the research team’s camera further proved the potential of DDFS, making it useful even with only a few input images in the input stacks, unlike other techniques.

Overall, DDFS could serve as a promising approach for applications where depth estimation is required, including robotics, autonomous vehicles, 3D image reconstruction, virtual and augmented reality, and surveillance. “Our method with camera-setting invariance can help extend the applicability of learning-based depth estimation techniques,” concludes Mukaigawa.

More information:
Yuki Fujimura et al, Deep Depth from Focal Stack with Defocus Model for Camera-Setting Invariance, International Journal of Computer Vision (2023). DOI: 10.1007/s11263-023-01964-x

Provided by
Nara Institute of Science and Technology

Citation:
Innovations in depth from focus/defocus pave the way to more capable computer vision systems (2024, February 9)
retrieved 9 February 2024
from https://techxplore.com/news/2024-02-depth-focusdefocus-pave-capable-vision.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

What’s next for STIRR, the free streaming service Thinking Media just acquired

Next Post

Building Transparency Supports Recent Buy Clean Policy Progress and Launches Industry Resource for Embodied Carbon Action

Next Post
Building Transparency Supports Recent Buy Clean Policy Progress and Launches Industry Resource for Embodied Carbon Action

Building Transparency Supports Recent Buy Clean Policy Progress and Launches Industry Resource for Embodied Carbon Action

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Big Medical Tax Blow on the Cards for Cash Strapped South Africans

Big Medical Tax Blow on the Cards for Cash Strapped South Africans

2 years ago
What Saudi Arabia Wants in Africa

What Saudi Arabia Wants in Africa

2 years ago
Effort to build common Mideast air picture gets a ‘B-minus’ from USAF official

Effort to build common Mideast air picture gets a ‘B-minus’ from USAF official

2 years ago
‘Joint Currency’ Could Be Launched To Challenge US Dollar

‘Joint Currency’ Could Be Launched To Challenge US Dollar

1 year ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.