Friday, May 16, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Implementing artificial neural network hardware systems by stacking them like ‘neuron-synapse-neuron’ structural blocks

Simon Osuji by Simon Osuji
January 23, 2024
in Artificial Intelligence
0
Implementing artificial neural network hardware systems by stacking them like ‘neuron-synapse-neuron’ structural blocks
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Implement artificial neural network hardware systems by stacking them like
(a) Schematic diagram of a biological neural network and (b) circuit schematic of an artificial neural network implemented in hardware using an artificial neuromorphic device. (c) Experimental results of the change in connection strength between two neurons as the synaptic weight changes. It is observed that the degree of firing of the downstream neuron decreases as the synaptic weight decreases. Credit: Korea Institute of Science and Technology (KIST)

With the emergence of new industries such as artificial intelligence, the Internet of Things, and machine learning, the world’s leading companies are focusing on developing next-generation artificial intelligence semiconductors that can process vast amounts of data while consuming energy efficiently.

Related posts

Can the US really enforce a global AI chip ban?

Can the US really enforce a global AI chip ban?

May 16, 2025
The Best Ergonomic Mouse (2025), Tested and Reviewed

The Best Ergonomic Mouse (2025), Tested and Reviewed

May 16, 2025

Neuromorphic computing, inspired by the human brain, is one of them. As a result, devices that mimic biological neurons and synapses are being developed one after another based on emerging materials and structures, but research on integrating individual devices into a system to verify and optimize them is still lacking.

In order for large-scale artificial neural network hardware to become practical in the future, it is essential to integrate artificial neuron and synaptic devices, and it is necessary to reduce mass production costs and energy usage by fabricating devices with the same materials and structures.

A team led by Dr. Joon Young Kwak of the Center for Neuromorphic Engineering at the Korea Institute of Science and Technology (KIST) has implemented an integrated element technology for artificial neuromorphic devices that can connect neurons and synapses like “Lego blocks” to construct large-scale artificial neural network hardware. The study is published in the journal Advanced Functional Materials.

The team fabricated vertically-stacked memristor devices using hBN, a two-dimensional material that is advantageous for high integration and ultra-low power implementation, to demonstrate biological neurons and synapse characteristics.

Since the team designed artificial neuron and synaptic devices with the same material and the same structure, unlike conventional silicon CMOS-based artificial neural imitation devices with complex structures using multiple devices, the devices developed by the team have secured ease of process and network scalability, paving the way for the development of large-scale artificial neural network hardware.

By integrating and connecting the developed devices, the team also successfully implemented the “neuron-synapse-neuron” structure, the basic unit block of an artificial neural network, in hardware to demonstrate spike signal-based information transmission, which is how the human brain works.

By experimentally verifying that the modulation of spike signal information between two neurons can be adjusted according to the synaptic weights of the artificial synaptic device, the researchers show the potential of using hBN-based emerging devices for low-power, large-scale AI hardware systems.

“Artificial neural network hardware systems can be used to efficiently process vast amounts of data generated in real-life applications such as smart cities, health care, next-generation communications, weather forecasting, and autonomous vehicles,” said KIST’s Dr. Joon Young Kwak.

“It will help improve environmental issues such as carbon emissions by significantly reducing energy usage while exceeding the scaling limits of existing silicon CMOS-based devices.”

More information:
Yooyeon Jo et al, Hardware Implementation of Network Connectivity Relationships Using 2D hBN‐Based Artificial Neuron and Synaptic Devices, Advanced Functional Materials (2023). DOI: 10.1002/adfm.202309058

Provided by
National Research Council of Science and Technology

Citation:
Implementing artificial neural network hardware systems by stacking them like ‘neuron-synapse-neuron’ structural blocks (2024, January 22)
retrieved 22 January 2024
from https://techxplore.com/news/2024-01-artificial-neural-network-hardware-stacking.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Veeva Pulse Shows Doctors Opening Up Two-Way Communications Doubles Digital Engagement

Next Post

B-21 production is a go, Pentagon says

Next Post
B-21 production is a go, Pentagon says

B-21 production is a go, Pentagon says

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

ChatGPT Predicts Price Surge Or Crash?

ChatGPT Predicts Price Surge Or Crash?

3 weeks ago
We Have Some Things to Recommend to You

We Have Some Things to Recommend to You

1 year ago
Best Crypto Exchanges in Colombia

Best Crypto Exchanges in Colombia

8 months ago
Amazon Steps Up Blockchain Game: Expands Managed Services

Amazon Steps Up Blockchain Game: Expands Managed Services

2 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.