• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

Ensuring effective AI in insurance operations

Simon Osuji by Simon Osuji
December 18, 2025
in Artificial Intelligence
0
Ensuring effective AI in insurance operations
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Artificial intelligence has been part of the insurance sector for years – the Finance function in many businesses is often the first to automate. But what’s remarkable in the instance of AI is how directly the technology is woven into day-to-day operational work. Not sitting in the background as a niche modelling capability, AI is now used in places where insurers spend most of their time and money: claims handling, underwriting, and running complex programmes.

Industry giants Allianz, Zurich, and Aviva have published evidence in just the last 12 months illustrating their shifts from experimentation stages to production-grade tools that support frontline workers in real workflows.

Simple claims: Fewer admin bottlenecks

Claims operations are a natural proving ground for AI because they comprise of a combination of paperwork and human judgement, and are usually undertaken in an environment of time pressure. Allianz describes its Insurance Copilot as an AI-powered tool that helps claims handlers automate repetitive tasks and pull together relevant information that would otherwise require multiple searches on different systems.

There’s a notable change to the workflows, Allianz outlines. The Copilot starts with data gathering, summarising claim and contract details so a handler can get just the essentials, quickly. The algorithm then performs document analysis, operations that include interpreting agreements and comparing claims against policy details. The tool flags discrepancies and suggests next steps. Once the human operator has taken their decision, the Copilot assists drafts context-aware emails.

This is the kind of daily activity that insurers care about, and by using their AI tools, they get reduced turnaround time, smoother settlements, and less friction for staff and customers. Allianz also frames AI as a way to reduce unnecessary payouts by highlighting important factors adjusters might otherwise miss. That has a clear impact on the company’s overall bottom line.

Complex documents to usable decisions

The quality of underwriting is determined by the quality of information available. Aviva uses the example of underwriters needing to read GP medical reports. The company says it’s launching an AI-powered summarisation tool that uses genAI to analyse and summarise these reports, which can sometimes amount to dozens of pages of medical text. The AI functions let underwriters make faster, more informed decisions.

The immediate value here is not AI replacing the underwriter, but technology reducing the time spent reading. The insurer is explicit that underwriters will review summaries and make the final decision – not the AI. That distinction matters because underwriting is technical and sensitive; compressing documents into decision-ready summaries can speed up processing, but it also raises questions about accuracy, omissions and auditability. Aviva addresses this by pointing to its “rigorous testing and controls“. An active test phase processed around 1,000 cases before roll-out to ensure the standards it required, the company says.

Uncertain contracts and servicing in multinational programmes

Commercial insurance is an area with its own challenges, which include the complexity from working in multiple jurisdictions, and the regional differences between policies and stakeholders. Zurich says generative AI’s ability to process unstructured information lets multinational insurance work more easily across several countries, helping it build quicker, more accurate pictures of commercial insurance offerings, and simplifying submissions in different countries.

Zurich also highlights contract certainty as a practical outcome: multinational programmes involve layered documents, varied local requirements and have the pervasive need for constant checking. It says GenAI helps internal experts compare, summarise and verify coverage in a programme using the operator’s native language, “in a fraction of the time” compared with the manual effort required to translate and capture the nuance of international differences. Although this area isn’t customer-facing, genAI improves the company’s responsiveness by letting its underwriters, risk engineers, and claims professionals work more efficiently.

Zurich also refers to AI “joining up the dots”, able to spot trends in data that would – given the quantity of information – go unnoticed by human staff. Indeed, AI amplifies its experts’ judgement rather than displacing it.

The common thread: augmentation, not automation-for-automation’s sake

Across these three examples, a consistent pattern emerges:

  • AI handles the heavy lifting of reading, searching, and drafting; high-volume tasks in insurance operations.
  • Humans remain accountable for consequent decisions, whether it’s claim payments or underwriting acceptance. (Allianz describes a “human-in-the-loop” approach, and Aviva and Zurich similarly emphasise experts retaining decision-making control).
  • Operational control and scalability are treated as major concerns: pilots, testing, domain-by-domain tuning, and expansion into lines of business are integral part of the narrative.

What this means for the sector

Insurers see faster cycle times, better consistency, reduced manual work, and a path to scaling. Their challenge is implementing tools responsibly, which is defined by secure data handling, explainability where needed, and the training of teams so they can question outputs appropriately.

AI is becoming less of a headline in the sector and more of an everyday reality, a practical silicon colleague in the routine work of insurance profitability.

(Image source: “house fire” by peteSwede is licensed under CC BY 2.0. )

 

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and co-located with other leading technology events. Click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.



Source link

Related posts

Keychron Q16 HE 8K Review: A Ceramic Disappointment

Keychron Q16 HE 8K Review: A Ceramic Disappointment

January 30, 2026
After Minneapolis, Tech CEOs Are Struggling to Stay Silent

After Minneapolis, Tech CEOs Are Struggling to Stay Silent

January 30, 2026
Previous Post

a unified ATM network in South Africa

Next Post

Pauline Nteere Celebrates Her Master’s in the United States

Next Post
Pauline Nteere Celebrates Her Master’s in the United States

Pauline Nteere Celebrates Her Master’s in the United States

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

US, Philippines Sign Deal on Sharing Military Information

US, Philippines Sign Deal on Sharing Military Information

1 year ago
How Much Do Google Employees Make? Median Salaries Revealed

How Much Do Google Employees Make? Median Salaries Revealed

9 months ago
Delivery startup Veho makes corporate job cuts

Delivery startup Veho makes corporate job cuts

2 years ago
BlackRock Bitcoin ETF Net Assets Pass $23B After 20% Q3 Surge

BlackRock Bitcoin ETF Net Assets Pass $23B After 20% Q3 Surge

1 year ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.