Tuesday, July 15, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Deep learning-based system paves the way for efficient battery health assessment

Simon Osuji by Simon Osuji
November 9, 2023
in Artificial Intelligence
0
Deep learning-based system paves the way for efficient battery health assessment
0
SHARES
2
VIEWS
Share on FacebookShare on Twitter


Revolutionary deep learning-based system paves the way for efficient battery health assessment
Grpahical abstract. Credit: Journal of Materials Chemistry A (2023). DOI: 10.1039/D3TA03603K

As the electric vehicle market continues to surge, the assessment of used batteries has become increasingly crucial. A team of researchers, led by Professor Donghyuk Kim and Professor Yunseok Choi in the School of Energy and Chemical Engineering at UNIST, along with Professor Hankwon Lim of the Graduate School of Carbon Neutrality at UNIST, has developed DeepSUGAR to help with this challenge.

Related posts

I Tried Grok’s Built-In Anime Companion and It Called Me a Twat

I Tried Grok’s Built-In Anime Companion and It Called Me a Twat

July 15, 2025
Trump to unveil investments to power AI boom

Trump to unveil investments to power AI boom

July 15, 2025

This advanced deep learning-based framework offers a novel approach to estimating the State-of-Health (SoH) of exhausted batteries, improving efficiency and reducing power consumption.

The study findings have been published in the online version of Journal of Materials Chemistry A.

Current assessment technologies for used batteries involve separate estimation of the SoH of the battery pack and its individual modules, leading to time inefficiency and excessive power consumption. DeepSUGAR addresses these challenges by utilizing a generative algorithm based on graphical representation techniques, enabling the estimation of individual module health based on battery pack SoH.

The research team analyzed the cycling profiles of a 14S7P pack and its constituent modules, training a convolutional neural network (CNN) to estimate SoH by spatializing cycling curves. DeepSUGAR, trained on pack data, exhibited outstanding performance with a Root Mean Square Error (RMSE) of 5.31 × 10-3. Validation testing with module data resulted in an RMSE of 7.38 × 10−3, further confirming its applicability. Additionally, the generated module cycling profiles from pack SoH using the deep generative model demonstrated remarkable performance with an RMSE of 8.38 × 10−3.

DeepSUGAR offers several key advantages, including reduced power consumption, processing costs, and carbon dioxide emissions, by integrating module-level diagnosis within the pack-level assessment process. This breakthrough technology has the potential to significantly impact battery health management, as it can diagnose the health status of exhausted batteries without being limited by the type of device.

“We have established a verification system that can determine whether a used battery is recyclable without disassembling the battery,” explained Professor Donghyuk Kim. “DeepSUGAR images charging and discharging data, enabling the determination of the health condition of the battery.”

DeepSUGAR’s capabilities extend beyond battery recycling. By predicting the health status of internal modules through pack diagnosis, this technology has the potential to optimize battery performance in various applications, contributing to the realization of green energy in the future.

More information:
Seojoung Park et al, A deep learning-based framework for battery reusability verification: one-step state-of-health estimation of pack and constituent modules using a generative algorithm and graphical representation, Journal of Materials Chemistry A (2023). DOI: 10.1039/D3TA03603K

Provided by
Ulsan National Institute of Science and Technology

Citation:
Deep learning-based system paves the way for efficient battery health assessment (2023, November 9)
retrieved 9 November 2023
from https://techxplore.com/news/2023-11-deep-learning-based-paves-efficient-battery.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Financial and technical issues delay new SANDF equipment

Next Post

XRP to Hit $1 as Culmination of Swell Conference?

Next Post
XRP to Hit $1 as Culmination of Swell Conference?

XRP to Hit $1 as Culmination of Swell Conference?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

NYC Advisors Leave Janney for Wells’ FiNet

NYC Advisors Leave Janney for Wells’ FiNet

3 months ago
TikTok’s Missing Music Is Making Users Very Upset

TikTok’s Missing Music Is Making Users Very Upset

1 year ago
Integrity ISS secures new Energy Transition Zone headquarters

Integrity ISS secures new Energy Transition Zone headquarters

1 year ago
Helicopter remains anyone? – defenceWeb

Helicopter remains anyone? – defenceWeb

4 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.