• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

Decoupled style structure in Fourier domain method improves raw to sRGB mapping

Simon Osuji by Simon Osuji
January 19, 2024
in Artificial Intelligence
0
Decoupled style structure in Fourier domain method improves raw to sRGB mapping
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


by Zhang Jie and Zhao Weiwei, Hefei Institutes of Physical Science, Chinese Academy of Sciences

Related posts

RFK Jr. Has Packed an Autism Panel With Cranks and Conspiracy Theorists

RFK Jr. Has Packed an Autism Panel With Cranks and Conspiracy Theorists

February 6, 2026
My Favorite TV to Watch the Winter Olympics Is on Sale

My Favorite TV to Watch the Winter Olympics Is on Sale

February 6, 2026
Decoupled style structure in Fourier domain method improves raw to sRGB mapping
The results image from ZRRdataset. The last row showcases the color histogram of the image. Credit: Zhang Jie

A team of researchers led by Professor Xie Chengjun and Associate Professor Zhang Jie at Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS), unveiled Fourier-ISP, a novel deep-learning based framework for RAW-to-sRGB image conversion.

This approach was accepted for publication in the 2024 proceedings of the Association for the Advancement of Artificial Intelligence (AAAI).

Converting RAW images to sRGB images enhances the visual appeal and usability of smartphone photography. However, current methods struggle with color and spatial structure accuracy, especially with resolution and image type variations. Combining color mapping and spatial structure produces suboptimal results due to the complex interplay between style and structure within the images.

To overcome these challenges, the team has developed a novel framework called Fourier-ISP. Inspired by the Image Signal Processing pipeline, this approach separates the style and structure of the image within the frequency domain.

“It enabled independent optimization,” said Zhang Jie, member of the team.

Fourier-ISP consists of three subnetworks: one for refining the structural details, another for learning accurate colors, and a third for blending these elements seamlessly. This decoupling of style and structure enables enhanced performance in image conversion, producing sharper and more accurate color and structural details.

Extensive evaluations across varied datasets confirm that Fourier-ISP realizes state-of-the-art results in qualitative and quantitative assessments, surpassing existing methods in precision and detail reproduction. It demonstrates robust transferability and effectiveness in handling both structural and style information, ensuring enhanced color reproduction and texture preservation. Notably, Fourier-ISP achieved an impressive PSNR improvement of 0.17dB in the ZRR dataset.

This framework introduces a novel insight into the field of image processing, showcasing the potential of style-structure decoupling in achieving high-fidelity image conversion, particularly in mobile photography, according to the team.

The paper is available on the arXiv preprint server.

More information:
Xuanhua He et al, Enhancing RAW-to-sRGB with Decoupled Style Structure in Fourier Domain, arXiv (2024). DOI: 10.48550/arxiv.2401.02161

Journal information:
arXiv

Provided by
Hefei Institutes of Physical Science, Chinese Academy of Sciences

Citation:
Decoupled style structure in Fourier domain method improves raw to sRGB mapping (2024, January 19)
retrieved 19 January 2024
from https://techxplore.com/news/2024-01-decoupled-style-fourier-domain-method.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

A new dawn for maker tech startups

Next Post

Mali receives more Bayraktar TB2 UAVs

Next Post
Mali receives more Bayraktar TB2 UAVs

Mali receives more Bayraktar TB2 UAVs

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Reco wants to eliminate the blind spot of shadow AI

Reco wants to eliminate the blind spot of shadow AI

3 months ago
Beware of Apple Gift Card Scam – IT News Africa

Beware of Apple Gift Card Scam – IT News Africa

3 years ago
Legal risk for employers with water treatment facilities looms

Legal risk for employers with water treatment facilities looms

8 months ago
Egypt shopping for Hellfire missiles and guided rockets

Egypt shopping for Hellfire missiles and guided rockets

1 year ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.