Tuesday, June 3, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Combining next-token prediction and video diffusion in computer vision and robotics

Simon Osuji by Simon Osuji
October 17, 2024
in Artificial Intelligence
0
Combining next-token prediction and video diffusion in computer vision and robotics
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Combining next-token prediction and video diffusion in computer vision and robotics
Credit: Massachusetts Institute of Technology

In the current AI zeitgeist, sequence models have skyrocketed in popularity for their ability to analyze data and predict what to do next. For instance, you’ve likely used next-token prediction models like ChatGPT, which anticipate each word (token) in a sequence to form answers to users’ queries. There are also full-sequence diffusion models like Sora, which convert words into dazzling, realistic visuals by successively “denoising” an entire video sequence.

Related posts

“Mario Kart World” Devs Broke Their Own Rule on Who Gets to Drive

“Mario Kart World” Devs Broke Their Own Rule on Who Gets to Drive

June 3, 2025
AI detects contaminated construction wood with 91% accuracy

AI detects contaminated construction wood with 91% accuracy

June 3, 2025

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have proposed a simple change to the diffusion training scheme that makes this sequence denoising considerably more flexible.

When applied to fields like computer vision and robotics, the next-token and full-sequence diffusion models have capability trade-offs. Next-token models can spit out sequences that vary in length.

However, they make these generations while being unaware of desirable states in the far future—such as steering its sequence generation toward a certain goal 10 tokens away—and thus require additional mechanisms for long-horizon (long-term) planning. Diffusion models can perform such future-conditioned sampling, but lack the ability of next-token models to generate variable-length sequences.

Researchers from CSAIL want to combine the strengths of both models, so they created a sequence model training technique called “Diffusion Forcing.” The name comes from “Teacher Forcing,” the conventional training scheme that breaks down full sequence generation into the smaller, easier steps of next-token generation (much like a good teacher simplifying a complex concept).






Credit: Massachusetts Institute of Technology

Diffusion Forcing found common ground between diffusion models and teacher forcing: They both use training schemes that involve predicting masked (noisy) tokens from unmasked ones. In the case of diffusion models, they gradually add noise to data, which can be viewed as fractional masking.

The MIT researchers’ Diffusion Forcing method trains neural networks to cleanse a collection of tokens, removing different amounts of noise within each one while simultaneously predicting the next few tokens. The result: a flexible, reliable sequence model that resulted in higher-quality artificial videos and more precise decision-making for robots and AI agents.

By sorting through noisy data and reliably predicting the next steps in a task, Diffusion Forcing can aid a robot in ignoring visual distractions to complete manipulation tasks. It can also generate stable and consistent video sequences and even guide an AI agent through digital mazes.

This method could potentially enable household and factory robots to generalize to new tasks and improve AI-generated entertainment.

“Sequence models aim to condition on the known past and predict the unknown future, a type of binary masking. However, masking doesn’t need to be binary,” says lead author, MIT electrical engineering and computer science (EECS) Ph.D. student, and CSAIL member Boyuan Chen.

“With Diffusion Forcing, we add different levels of noise to each token, effectively serving as a type of fractional masking. At test time, our system can ‘unmask’ a collection of tokens and diffuse a sequence in the near future at a lower noise level. It knows what to trust within its data to overcome out-of-distribution inputs.”

In several experiments, Diffusion Forcing thrived at ignoring misleading data to execute tasks while anticipating future actions.

When implemented into a robotic arm, for example, it helped swap two toy fruits across three circular mats, a minimal example of a family of long-horizon tasks that require memories. The researchers trained the robot by controlling it from a distance (or teleoperating it) in virtual reality.

The robot is trained to mimic the user’s movements from its camera. Despite starting from random positions and seeing distractions like a shopping bag blocking the markers, it placed the objects into its target spots.

To generate videos, they trained Diffusion Forcing on “Minecraft” game play and colorful digital environments created within Google’s DeepMind Lab Simulator. When given a single frame of footage, the method produced more stable, higher-resolution videos than comparable baselines like a Sora-like full-sequence diffusion model and ChatGPT-like next-token models.

These approaches created videos that appeared inconsistent, with the latter sometimes failing to generate working video past just 72 frames.

Diffusion Forcing not only generates fancy videos, but can also serve as a motion planner that steers toward desired outcomes or rewards. Thanks to its flexibility, Diffusion Forcing can uniquely generate plans with varying horizon, perform tree search, and incorporate the intuition that the distant future is more uncertain than the near future.

In the task of solving a 2D maze, Diffusion Forcing outperformed six baselines by generating faster plans leading to the goal location, indicating that it could be an effective planner for robots in the future.

Across each demo, Diffusion Forcing acted as a full sequence model, a next-token prediction model, or both. According to Chen, this versatile approach could potentially serve as a powerful backbone for a “world model,” an AI system that can simulate the dynamics of the world by training on billions of internet videos.

This would allow robots to perform novel tasks by imagining what they need to do based on their surroundings. For example, if you asked a robot to open a door without being trained on how to do it, the model could produce a video that’ll show the machine how to do it.

The team is currently looking to scale up their method to larger datasets and the latest transformer models to improve performance. They intend to broaden their work to build a ChatGPT-like robot brain that helps robots perform tasks in new environments without human demonstration.

“With Diffusion Forcing, we are taking a step to bringing video generation and robotics closer together,” says senior author Vincent Sitzmann, MIT assistant professor and member of CSAIL, where he leads the Scene Representation group.

“In the end, we hope that we can use all the knowledge stored in videos on the internet to enable robots to help in everyday life. Many more exciting research challenges remain, like how robots can learn to imitate humans by watching them even when their own bodies are so different from our own.”

The team will present their research at NeurIPS in December, and their paper is available on the arXiv preprint server.

More information:
Boyuan Chen et al, Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion, arXiv (2024). DOI: 10.48550/arxiv.2407.01392

Journal information:
arXiv

Provided by
Massachusetts Institute of Technology

Citation:
Combining next-token prediction and video diffusion in computer vision and robotics (2024, October 17)
retrieved 17 October 2024
from https://techxplore.com/news/2024-10-combining-token-video-diffusion-vision.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Dogecoin Rises 17% After Musk Tweet: Should You Buy DOGE?

Next Post

Montenegro to finalize Do Kwon’s extradition fate by week’s end

Next Post
Montenegro to finalize Do Kwon’s extradition fate by week’s end

Montenegro to finalize Do Kwon's extradition fate by week's end

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

African Development Bank and partners plan to make Abidjan-Lagos corridor highway a potent economic and industrial hub

African Development Bank and partners plan to make Abidjan-Lagos corridor highway a potent economic and industrial hub

6 months ago
Aldar invests AED 1bln to further expand its UAE logistics real estate business

Aldar invests AED 1bln to further expand its UAE logistics real estate business

1 year ago
Bruised Cruise shifts gears in scaled-down robotaxi comeback plan

Bruised Cruise shifts gears in scaled-down robotaxi comeback plan

2 years ago
Tech founders launch fund aimed at finding Africa’s next ‘unicorns’

Tech founders launch fund aimed at finding Africa’s next ‘unicorns’

2 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.