• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

Attribute augmentation-based label integration for crowdsourcing

Simon Osuji by Simon Osuji
October 31, 2023
in Artificial Intelligence
0
Attribute augmentation-based label integration for crowdsourcing
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Attribute augmentation-based label integration for crowdsourcing
Credit: Frontiers of Computer Science (2022). DOI: 10.1007/s11704-022-2225-z

Crowdsourcing provides an effective and low-cost way to collect labels from crowd workers. Due to the lack of professional knowledge, the quality of crowdsourced labels is relatively low. A common approach to addressing this issue is to collect multiple labels for each instance from different crowd workers and then a label integration method is used to infer its true label. However, almost all existing label integration methods merely make use of the original attribute information and do not pay attention to the quality of the multiple noisy label set of each instance.

Related posts

Meet Scotland’s Whisky-Sniffing Robot Dog

Meet Scotland’s Whisky-Sniffing Robot Dog

February 22, 2026
Supreme Court Rules Most of Donald Trump’s Tariffs Are Illegal

Supreme Court Rules Most of Donald Trump’s Tariffs Are Illegal

February 22, 2026

To solve these issues, a research team led by Liangxiao JIANG published their new research in Frontiers of Computer Science.

The team proposed a novel three-stage label integration method called attribute augmentation-based label integration (AALI). AALI enhances the performance of label integration by improving the discriminative ability of the original attribute space and identifying the quality of each instance’s multiple noisy label set. Experimental results on simulated and real-world crowdsourced datasets demonstrate that AALI outperforms all the other state-of-the-art competitors in terms of label quality and model quality.

In the research, they design an attribute augmentation method to enrich the attribute space, and then develop a filter is to single out reliable instances with high-quality multiple noisy label sets from a crowdsourced dataset. Finally, they use the cross-validation to build multiple component classifiers on reliable instances to predict all instances.

In the first stage, AALI defines class membership probabilities generated from a multiple noisy label set as new attributes and constructs the augmented attributes by concatenating the original attributes with the new attributes. In the second stage, AALI develops a filter to single out reliable instances with high-quality multiple noisy label sets. As a result, the original dataset is divided into a reliable dataset and an unreliable dataset. In the third stage, AALI uses majority voting to initialize integrated labels of all instances in reliable dataset while estimating the certainty of each integrated label and assigning it to the weight of each instance.

Next, AALI uses K-fold cross-validation to build M component classifiers on reliable dataset to predict class probability distributions of all instances. At last, AALI updates the integrated label of each instance in reliable dataset and assigns the integrated label to each instance in unreliable dataset. The extensive experimental results on both simulated and real-world crowdsourced datasets validate the superiority of AALI.

Future work can focus on finding the optimal value of the developed filter’s threshold using an optimization method.

More information:
Yao Zhang et al, Attribute augmentation-based label integration for crowdsourcing, Frontiers of Computer Science (2022). DOI: 10.1007/s11704-022-2225-z

Provided by
Frontiers Journals

Citation:
Attribute augmentation-based label integration for crowdsourcing (2023, October 30)
retrieved 30 October 2023
from https://techxplore.com/news/2023-10-attribute-augmentation-based-crowdsourcing.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Cubans and “Tiffies” thanked for refurbishing SA Army prime mission equipment

Next Post

FTX Founder Used Alameda Profits to Buy SOL for $0.20

Next Post
Solana, XRP, Cardano See Inflows as Bitcoin Faces $45M Outflows

FTX Founder Used Alameda Profits to Buy SOL for $0.20

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Lawyers Use Fake References from ChatGPT

3 years ago
Ivorian Shellxroot Crowned Champions of the 3rd Edition of the Economic Community of West African States (ECOWAS) Hackathon

Ivorian Shellxroot Crowned Champions of the 3rd Edition of the Economic Community of West African States (ECOWAS) Hackathon

1 year ago
UniQure to seek approval of Huntington’s gene therapy after trial win

UniQure to seek approval of Huntington’s gene therapy after trial win

5 months ago

Appropriate Technology: Solar Powering Hospitals, Orphanages & Schools

3 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.