• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

Algorithm breaks the exabyte barrier

Simon Osuji by Simon Osuji
September 11, 2023
in Artificial Intelligence
0
Algorithm breaks the exabyte barrier
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Machine learning masters massive data sets
Illustration of distributed HPC hardware and different communication channels. Credit: The Journal of Supercomputing (2023). DOI: 10.1007/s11227-023-05587-4

A machine-learning algorithm demonstrated the capability to process data that exceeds a computer’s available memory by identifying a massive data set’s key features and dividing them into manageable batches that don’t choke computer hardware. Developed at Los Alamos National Laboratory, the algorithm set a world record for factorizing huge data sets during a test run on Oak Ridge National Laboratory’s Summit, the world’s fifth-fastest supercomputer.

Related posts

Moving experimental pilots to AI production

Moving experimental pilots to AI production

February 5, 2026
Motorola Moto Watch Review: Polar-Powered

Motorola Moto Watch Review: Polar-Powered

February 5, 2026

Equally efficient on laptops and supercomputers, the highly scalable algorithm solves hardware bottlenecks that prevent processing information from data-rich applications in cancer research, satellite imagery, social media networks, national security science and earthquake research, to name just a few.

“We developed an ‘out-of-memory’ implementation of the non-negative matrix factorization method that allows you to factorize larger data sets than previously possible on a given hardware,” said Ismael Boureima, a computational physicist at Los Alamos National Laboratory. Boureima is first author of the paper in The Journal of Supercomputing on the record-breaking algorithm.

“Our implementation simply breaks down the big data into smaller units that can be processed with the available resources. Consequently, it’s a useful tool for keeping up with exponentially growing data sets.”

“Traditional data analysis demands that data fit within memory constraints. Our approach challenges this notion,” said Manish Bhattarai, a machine learning scientist at Los Alamos and co-author of the paper.

“We have introduced an out-of-memory solution. When the data volume exceeds the available memory, our algorithm breaks it down into smaller segments. It processes these segments one at a time, cycling them in and out of the memory. This technique equips us with the unique ability to manage and analyze extremely large data sets efficiently.”

The distributed algorithm for modern and heterogeneous high-performance computer systems can be useful on hardware as small as a desktop computer, or as large and complex as Chicoma, Summit or the upcoming Venado supercomputers, Boureima said.

“The question is no longer whether it is possible to factorize a larger matrix, rather how long is the factorization going to take,” Boureima said.

The Los Alamos implementation takes advantage of hardware features such as GPUs to accelerate computation and fast interconnect to efficiently move data between computers. At the same time, the algorithm efficiently gets multiple tasks done simultaneously.

Non-negative matrix factorization is another installment of the high-performance algorithms developed under the SmartTensors project at Los Alamos.

In machine learning, non-negative matrix factorization can be used as a form of unsupervised learning to pull meaning from data, Boureima said. “That’s very important for machine learning and data analytics because the algorithm can identify explainable latent features in the data that have a particular meaning to the user.”

The record-breaking run

In the record-breaking run by the Los Alamos team, the algorithm processed a 340-terabyte dense matrix and an 11-exabyte sparse matrix, using 25,000 GPUs.

“We’re reaching exabyte factorization, which no one else has done, to our knowledge,” said Boian Alexandrov, a co-author of the new paper and a theoretical physicist at Los Alamos who led the team that developed the SmartTensors artificial intelligence platform.

Decomposing or factoring data is a specialized data-mining technique aimed at extracting pertinent information, simplifying the data into understandable formats.

Bhattarai further emphasized the scalability of their algorithm, remarking, “In contrast, conventional methods often grapple with bottlenecks, mainly due to the lag in data transfer between a computer’s processors and its memory.”

“We also showed you don’t necessarily need big computers,” Boureima said. “Scaling to 25,000 GPUs is great if you can afford it, but our algorithm will be useful on desktop computers for something you couldn’t process before.”

More information:
Ismael Boureima et al, Distributed out-of-memory NMF on CPU/GPU architectures, The Journal of Supercomputing (2023). DOI: 10.1007/s11227-023-05587-4

Provided by
Los Alamos National Laboratory

Citation:
Machine learning masters massive data sets: Algorithm breaks the exabyte barrier (2023, September 11)
retrieved 11 September 2023
from https://techxplore.com/news/2023-09-machine-masters-massive-algorithm-exabyte.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Max Q: Elon says Starship is ready, FAA says not quite

Next Post

Unstable Diffusion AI: How to Use (2023)

Next Post
Unstable Diffusion AI: How to Use (2023)

Unstable Diffusion AI: How to Use (2023)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

China & India Ditch US Dollar For Oil, Save $17 Billion

India Refuses To Pay Chinese Yuan for Oil, Prefers US Dollar

2 years ago
Navigating Global Industry Standard on Tailings Management in South Africa

Navigating Global Industry Standard on Tailings Management in South Africa

9 months ago
Finnish Firm Unveils ‘Steel Eagle ER’ Drone Developed for Ukraine

Finnish Firm Unveils ‘Steel Eagle ER’ Drone Developed for Ukraine

1 year ago
Binance CEO Changpeng Zhao Quits, Pleads Guilty, and Must Pay $200 Million in Fines

Binance CEO Changpeng Zhao Quits, Pleads Guilty, and Must Pay $200 Million in Fines

2 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.