Monday, May 26, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Researchers develop a biomechanical dataset for badminton performance analysis

Simon Osuji by Simon Osuji
May 7, 2024
in Artificial Intelligence
0
Researchers develop a biomechanical dataset for badminton performance analysis
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


GIST-MIT CSAIL researchers develop a biomechanical dataset for badminton performance analysis
The dataset proposed by the researchers captures badminton players’ movements and responses, aiding AI-driven coaching assistants to improve stroke quality for all skill levels. Credit: SeungJun Kim at Gwangju Institute of Science and Technology (GIST)

In sports training, practice is the key, but being able to emulate the techniques of professional athletes can take a player’s performance to the next level. AI-based personalized sports coaching assistants can make this a reality by utilizing published datasets. With cameras and sensors strategically placed on the athlete’s body, these systems can track everything, including joint movement patterns, muscle activation levels, and gaze movements.

Related posts

The Quest to Prove the Existence of a New Type of Quantum Particle

The Quest to Prove the Existence of a New Type of Quantum Particle

May 25, 2025
22 Best Memorial Day Mattress and Bedding Sales (2025)

22 Best Memorial Day Mattress and Bedding Sales (2025)

May 25, 2025

Using this data, personalized feedback is provided on player technique, along with improvement recommendations. Athletes can access this feedback anytime, and anywhere, making these systems versatile for athletes at all levels.

In a study published in the journal Scientific Data on April 5, 2024, researchers led by Associate Professor SeungJun Kim from the Gwangju Institute of Science and Technology (GIST), South Korea, in collaboration with researchers from Massachusetts Institute of Technology (MIT), CSAIL, U.S., have developed a MultiSenseBadminton dataset for AI-driven badminton training.

“Badminton could benefit from these various sensors, but there is a scarcity of comprehensive badminton action datasets for analysis and training feedback,” says Ph.D. candidate Minwoo Seong, the first author of the study.

The study took inspiration from MIT’s ActionSense project, which used wearable sensors to track everyday kitchen tasks such as peeling, slicing vegetables, and opening jars. Seong collaborated with MIT’s team, including MIT CSAIL postdoc researcher Joseph DelPreto and MIT CSAIL Director and MIT EECS Professor Daniela Rus and Wojciech Matusik. Together, they developed the MultiSenseBadminton dataset, capturing movements and physiological responses of badminton players.

This dataset, shaped with insights from professional badminton coaches, aims to enhance the quality of forehand clear and backhand drive strokes. For this, the researchers collected 23 hours of swing motion data from 25 players with varying levels of training experience.

During the study, players were tasked with repeatedly executing forehand clear and backhand drive shots while sensors recorded their movements and responses. These included inertial measurement units (IMU) sensors to track joint movements, electromyography (EMG) sensors to monitor muscle signals, insole sensors for foot pressure, and a camera to record both body movements and shuttlecock positions.

With a total of 7,763 data points collected, each swing was meticulously labeled based on stroke type, player’s skill level, shuttlecock landing position, impact location relative to the player, and sound upon impact. The dataset was then validated using a machine learning model, ensuring its suitability for training AI models to evaluate stroke quality and offer feedback.

“The MultiSenseBadminton dataset can be used to build AI-based education and training systems for racket sports players. By analyzing the disparities in motion and sensor data among different levels of players and creating AI-generated action trajectories, the dataset can be applied to personalized motion guides for each level of players,” says Seong.

The gathered data can enhance training through haptic vibration or electrical muscle stimulation, promoting better motion and refining swing techniques. Additionally, player tracking data, like that in the MultiSenseBadminton dataset, could fuel virtual reality games or training simulations, making sports training more accessible and affordable, potentially transforming how people exercise.

More information:
Minwoo Seong et al, MultiSenseBadminton: Wearable Sensor–Based Biomechanical Dataset for Evaluation of Badminton Performance, Scientific Data (2024). DOI: 10.1038/s41597-024-03144-z

Provided by
Gwangju Institute of Science and Technology

Citation:
Researchers develop a biomechanical dataset for badminton performance analysis (2024, May 6)
retrieved 6 May 2024
from https://techxplore.com/news/2024-05-biomechanical-dataset-badminton-analysis.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Military Academy launches centre for artificial intelligence excellence

Next Post

Fire erupts at Cape Town heritage building, months after balcony collapse

Next Post
Fire erupts at Cape Town heritage building, months after balcony collapse

Fire erupts at Cape Town heritage building, months after balcony collapse

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Lorraine O’Grady, conceptual artist who dissected language and dualities, has died, aged 90

Lorraine O’Grady, conceptual artist who dissected language and dualities, has died, aged 90

5 months ago
US Air Force Receives Northrop Stand-in Attack Weapon Test Missile

US Air Force Receives Northrop Stand-in Attack Weapon Test Missile

6 months ago
Stanbic, MiDA to fund Green Student Housing in Kenya

Stanbic, MiDA to fund Green Student Housing in Kenya

12 months ago
IDEX and NAVDEX 2025 secure $5.43bln in contracts over three days

IDEX and NAVDEX 2025 secure $5.43bln in contracts over three days

3 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.