Thursday, May 29, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

New AI algorithm for robots consistently outperforms state-of-the-art systems

Simon Osuji by Simon Osuji
May 2, 2024
in Artificial Intelligence
0
New AI algorithm for robots consistently outperforms state-of-the-art systems
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Random robots are more reliable
Although the current study tested the AI algorithm only on simulated robots, the researchers have developed NoodleBot for future testing of the algorithm in the real world. Credit: Northwestern University

Northwestern University engineers have developed a new artificial intelligence (AI) algorithm designed specifically for smart robotics. By helping robots rapidly and reliably learn complex skills, the new method could significantly improve the practicality—and safety—of robots for a range of applications, including self-driving cars, delivery drones, household assistants and automation.

Related posts

Auto Shanghai 2025 Wasn’t Just a Car Show. It Was a Warning to the West

Auto Shanghai 2025 Wasn’t Just a Car Show. It Was a Warning to the West

May 29, 2025
The Switch 2 May Signal the End of Physical Games

The Switch 2 May Signal the End of Physical Games

May 29, 2025

Called Maximum Diffusion Reinforcement Learning (MaxDiff RL), the algorithm’s success lies in its ability to encourage robots to explore their environments as randomly as possible in order to gain a diverse set of experiences.

This “designed randomness” improves the quality of data that robots collect regarding their own surroundings. And, by using higher-quality data, simulated robots demonstrated faster and more efficient learning, improving their overall reliability and performance.

When tested against other AI platforms, simulated robots using Northwestern’s new algorithm consistently outperformed state-of-the-art models. The new algorithm works so well, in fact, that robots learned new tasks and then successfully performed them within a single attempt—getting it right the first time. This starkly contrasts current AI models, which enable slower learning through trial and error.

The research, titled “Maximum diffusion reinforcement learning,” is published in the journal Nature Machine Intelligence.

“Other AI frameworks can be somewhat unreliable,” said Northwestern’s Thomas Berrueta, who led the study. “Sometimes they will totally nail a task, but, other times, they will fail completely. With our framework, as long as the robot is capable of solving the task at all, every time you turn on your robot you can expect it to do exactly what it’s been asked to do. This makes it easier to interpret robot successes and failures, which is crucial in a world increasingly dependent on AI.”






Credit: Northwestern University

Berrueta is a Presidential Fellow at Northwestern and a Ph.D. candidate in mechanical engineering at the McCormick School of Engineering. Robotics expert Todd Murphey, a professor of mechanical engineering at McCormick and Berrueta’s adviser, is the paper’s senior author. Berrueta and Murphey co-authored the paper with Allison Pinosky, also a Ph.D. candidate in Murphey’s lab.

The disembodied disconnect

To train machine-learning algorithms, researchers and developers use large quantities of big data, which humans carefully filter and curate. AI learns from this training data, using trial and error until it reaches optimal results.

While this process works well for disembodied systems, like ChatGPT and Google Gemini (formerly Bard), it does not work for embodied AI systems like robots. Robots, instead, collect data by themselves—without the luxury of human curators.

“Traditional algorithms are not compatible with robotics in two distinct ways,” Murphey said.

“First, disembodied systems can take advantage of a world where physical laws do not apply. Second, individual failures have no consequences. For computer science applications, the only thing that matters is that it succeeds most of the time. In robotics, one failure could be catastrophic.”

To solve this disconnect, Berrueta, Murphey and Pinosky aimed to develop a novel algorithm that ensures robots will collect high-quality data on-the-go.

At its core, MaxDiff RL commands robots to move more randomly in order to collect thorough, diverse data about their environments. By learning through self-curated random experiences, robots acquire necessary skills to accomplish useful tasks.

Getting it right the first time

To test the new algorithm, the researchers compared it against current, state-of-the-art models. Using computer simulations, the researchers asked simulated robots to perform a series of standard tasks. Across the board, robots using MaxDiff RL learned faster than the other models. They also correctly performed tasks much more consistently and reliably than others.

Perhaps even more impressive: Robots using the MaxDiff RL method often succeeded at correctly performing a task in a single attempt. And that’s even when they started with no knowledge.

“Our robots were faster and more agile—capable of effectively generalizing what they learned and applying it to new situations,” Berrueta said. “For real-world applications where robots can’t afford endless time for trial and error, this is a huge benefit.”

Because MaxDiff RL is a general algorithm, it can be used for a variety of applications. The researchers hope it addresses foundational issues holding back the field, ultimately paving the way for reliable decision-making in smart robotics.

“This doesn’t have to be used only for robotic vehicles that move around,” Pinosky said. “It also could be used for stationary robots—such as a robotic arm in a kitchen that learns how to load the dishwasher. As tasks and physical environments become more complicated, the role of embodiment becomes even more crucial to consider during the learning process. This is an important step toward real systems that do more complicated, more interesting tasks.”

More information:
Maximum diffusion reinforcement learning, Nature Machine Intelligence (2024). DOI: 10.1038/s42256-024-00829-3

Provided by
Northwestern University

Citation:
Random robots are more reliable: New AI algorithm for robots consistently outperforms state-of-the-art systems (2024, May 2)
retrieved 2 May 2024
from https://techxplore.com/news/2024-05-random-robots-reliable-ai-algorithm.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Flotation Energy moves in to Aberdeen’s iQ Building

Next Post

Giant military manta ray drone passes first ocean test

Next Post
Giant military manta ray drone passes first ocean test

Giant military manta ray drone passes first ocean test

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Cathie Wood Bets Big on AMZN

Cathie Wood Bets Big on AMZN

2 months ago
Security Concerns Prompt Bitcoin Core Developer to Leave Lightning Network

Security Concerns Prompt Bitcoin Core Developer to Leave Lightning Network

2 years ago
Judges Showed Leniency in Vast Majority of Jan. 6 Cases

Judges Showed Leniency in Vast Majority of Jan. 6 Cases

1 year ago
Nigeria estimates over $2bn carbon market activation by 2030 – EnviroNews

Nigeria estimates over $2bn carbon market activation by 2030 – EnviroNews

4 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.