Thursday, May 22, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

New mitigation framework reduces bias in classification outcomes

Simon Osuji by Simon Osuji
May 1, 2024
in Artificial Intelligence
0
New mitigation framework reduces bias in classification outcomes
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


New mitigation framework reduces bias in classification outcomes
(A) The “propose-review” scenario between Alice and Bob. (B) Measuring attributes’ pairwise distances. (C) Determining attributes’ bias concentrations. (D) Transforming bias-prone attributes. Credit: Intelligent Computing (2024). DOI: 10.34133/icomputing.0083

We use computers to help us make (hopefully) unbiased decisions. The problem is that machine-learning algorithms do not always make fair classifications if human bias is embedded in the data used to train them—which is often the case in practice.

Related posts

Why the Middle East is a hot place for global tech investments

Why the Middle East is a hot place for global tech investments

May 22, 2025
The Epic Rise and Fall of a Dark-Web Psychedelics Kingpin

The Epic Rise and Fall of a Dark-Web Psychedelics Kingpin

May 22, 2025

To ease this “garbage in, garbage out” situation, a research team presented a flexible framework for mitigating bias in machine classification. Their research was published in Intelligent Computing.

Existing attempts to mitigate classification bias, according to the team, are often held back by their reliance on specific metrics of fairness and predetermined bias terms. The team’s framework avoids these two types of reliance; their bias mitigation can be evaluated under different fairness metrics, and they infer specific bias terms from the data.

The team evaluated the framework on seven datasets across 21 machine classifiers. Across the experiments, bias in classification outcomes is substantially reduced, with classification accuracy largely preserved—working desirably under the fairness-utility trade-off.

The framework shares the setup of the adversarial debiasing method, considering a propose-review scenario between Alice, e.g., the enterprise, and Bob, e.g., the regulator. Alice sends a proposal to Bob for using his data to develop a target classifier, say, a college matching system.

Bob reviews the proposal and aims to make sure that Alice’s classification does not demonstrate substantial bias along a sensitive dimension that he aims to protect, say, students’ middle-school transfer experience. The goal is to build a classifier that has minimal discrimination along the protected dimension(s) with only a small performance sacrifice in the target classification.

Bias mitigation is achieved by identifying data attributes that are prone to introducing bias and then applying effective data transforms on records under these attributes.

This involves assessing the contribution of attributes to data separation, computing the distances between attributes, and establishing with these distances a bias-attribute mapping in the constructed bias hyperspace. With this mapping, bias terms are inferred, bias-prone attributes are recognized, and their bias concentrations are measured.

However, the workflow may encounter difficulties when applied to large datasets due to limitations in scalability, among other factors.

In future research, the team is interested in extending the framework to directly strike a balance between classification fairness and accuracy, considering the potential conflict between the public and private sectors. From a broader standpoint, incorporating behavioral features into classification bias mitigation and analyzing practical setups in the application of such frameworks is an important direction.

More information:
Zhoufei Tang et al, Metric-Independent Mitigation of Unpredefined Bias in Machine Classification, Intelligent Computing (2024). DOI: 10.34133/icomputing.0083

Provided by
Intelligent Computing

Citation:
New mitigation framework reduces bias in classification outcomes (2024, April 23)
retrieved 1 May 2024
from https://techxplore.com/news/2024-04-mitigation-framework-bias-classification-outcomes.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Summit Tackles Tough Challenges in Land of Wonder

Next Post

Binance executive remains detained as Nigerian court postpones case

Next Post
Binance executive remains detained as Nigerian court postpones case

Binance executive remains detained as Nigerian court postpones case

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

HyNet partnership aims to address growing green skills shortfall

HyNet partnership aims to address growing green skills shortfall

2 years ago
Ramaphosa extends Operation Copper maritime security deployment

Ramaphosa extends Operation Copper maritime security deployment

1 month ago
What Strategies Ensure IT Foundations Align with AI Objectives? – IT News Africa

What Strategies Ensure IT Foundations Align with AI Objectives? – IT News Africa

2 years ago
Zambia sets its sight on its mining industry for an economic recovery

Zambia sets its sight on its mining industry for an economic recovery

4 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.