Friday, May 30, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Programming light propagation creates highly efficient neural networks

Simon Osuji by Simon Osuji
January 26, 2024
in Artificial Intelligence
0
Programming light propagation creates highly efficient neural networks
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Programming light propagation creates highly efficient neural networks
Programming optical propagation for a computational task is accomplished through the depicted workflow. Credit: Advanced Photonics (2024). DOI: 10.1117/1.AP.6.1.016002

Current artificial intelligence models utilize billions of trainable parameters to achieve challenging tasks. However, this large number of parameters comes with a hefty cost. Training and deploying these huge models require immense memory space and computing capability that can only be provided by hangar-sized data centers in processes that consume energy equivalent to the electricity needs of midsized cities.

Related posts

Trump’s Administration Wants to Erase Queer History. An Unconventional Book Club Is Fighting Back

Trump’s Administration Wants to Erase Queer History. An Unconventional Book Club Is Fighting Back

May 30, 2025
US supercomputer named after Nobel laureate Jennifer Doudna to power AI and scientific research

US supercomputer named after Nobel laureate Jennifer Doudna to power AI and scientific research

May 30, 2025

The research community is presently making efforts to rethink both the related computing hardware and the machine learning algorithms to sustainably keep the development of artificial intelligence at its current pace. Optical implementation of neural network architectures is a promising avenue because of the low power implementation of the connections between the units.

New research reported in Advanced Photonics combines light propagation inside multimode fibers with a small number of digitally programmable parameters and achieves the same performance on image classification tasks with fully digital systems with more than 100 times more programmable parameters. This computational framework streamlines the memory requirement and reduces the need for energy-intensive digital processes, while achieving the same level of accuracy in a variety of machine learning tasks.

The heart of this work, led by Professors Demetri Psaltis and Christophe Moser of EPFL (Swiss Federal Institute of Technology in Lausanne), lies in the precise control of ultrashort pulses within multimode fibers through a technique known as wavefront shaping. This allows for the implementation of nonlinear optical computations with microwatts of average optical power, reaching a crucial step in realizing the potential of optical neural networks.

“In this study, we found out that with a small group of parameters, we can select a specific set of model weights from the weight bank that optics provides and employ it for the aimed computing task. This way, we used naturally occurring phenomena as a computing hardware without going into the trouble of manufacturing and operating a device specialized for this purpose,” states Ilker Oguz, lead co-author of the work.

This result marks a significant stride towards addressing the challenges posed by the escalating demand for larger machine learning models. By harnessing the computational power of light propagation through multimode fibers, the researchers have paved the way for low-energy, highly efficient hardware solutions in artificial intelligence.

As showcased in the reported nonlinear optics experiment, this computational framework can also be put to use for efficiently programming different high-dimensional, nonlinear phenomena for performing machine learning tasks and can offer a transformative solution to the resource-intensive nature of current AI models.

More information:
Ilker Oguz et al, Programming nonlinear propagation for efficient optical learning machines, Advanced Photonics (2024). DOI: 10.1117/1.AP.6.1.016002

Citation:
Programming light propagation creates highly efficient neural networks (2024, January 25)
retrieved 25 January 2024
from https://techxplore.com/news/2024-01-propagation-highly-efficient-neural-networks.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Luko’s acquisition won’t make everyone happy, but the insurtech will live on

Next Post

Top SADC official in DR Congo to oversee mission progress

Next Post
Top SADC official in DR Congo to oversee mission progress

Top SADC official in DR Congo to oversee mission progress

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Sarb sees stress on lenders from high rates

Sarb sees stress on lenders from high rates

1 year ago
UP.Labs-Porsche’s newest startup wants to be the Plaid of automotive retail

UP.Labs-Porsche’s newest startup wants to be the Plaid of automotive retail

2 weeks ago
Mzansi reacts as a trans woman celebrates SA trans women on Women’s Day

Mzansi reacts as a trans woman celebrates SA trans women on Women’s Day

2 years ago
Botswana pushes for law granting locals 24% mining ownership

Botswana pushes for law granting locals 24% mining ownership

10 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.