• Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Intelligence
    • Policy Intelligence
    • Security Intelligence
    • Economic Intelligence
    • Fashion Intelligence
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • LBNN Blueprints

Inexpensive water-treatment monitoring process powered by machine learning

Simon Osuji by Simon Osuji
November 6, 2023
in Artificial Intelligence
0
Inexpensive water-treatment monitoring process powered by machine learning
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter


Inexpensive water-treatment monitoring process powered by machine learning
Credit: Frontiers of Environmental Science & Engineering (2023). DOI: 10.1007/s11783-024-1777-6. https://journal.hep.com.cn/fese/EN/10.1007/s11783-024-1777-6

Small, rural drinking water treatment (DWT) plants typically use only chlorine to implement the disinfection process. For these plants, free chlorine residual (FCR) serves as a key performance measure for disinfection. The FCR is stated as the concentration of free chlorine remaining in the water, after the chlorine has oxidized the target contaminants.

Related posts

Brenna Huckaby Starter Pack: Paralympic Winter Games 2026

Brenna Huckaby Starter Pack: Paralympic Winter Games 2026

February 5, 2026
What Is Thread? Matter’s Smart Home Network Protocol, Explained

What Is Thread? Matter’s Smart Home Network Protocol, Explained

February 5, 2026

In practice, the FCR is determined by plant operators based on their experience. Specifically, operators choose a dose of chlorine to achieve a satisfactory FCR concentration, but often have to make an estimate of the chlorine requirements.

The challenge of determining an accurate FCR has led to the use of advanced FCR prediction techniques. In particular, machine learning (ML) algorithms have proven effective in achieving this goal. By identifying correlations among numerous variables in complex systems, successful ML implementation could accurately predict FCR, even from cost-effective, low-tech monitoring data.

In a new study published in Frontiers of Environmental Science & Engineering, the authors implemented a gradient boosting (GB) ML model with categorical boosting (CatBoost) to predict FCR. GB algorithms, including CatBoost, accumulate decision trees to generate the prediction function.

The input data was collected from a DWT plant in Georgia in the U.S., and included a wide variety of DWT monitoring records and operational process parameters. Four iterations of a generalized modeling approach were developed, including (1) base case, (2) rolling average, (3) parameter consolidation, and (4) intuitive parameters.

The research team also applied the SHapely Additive explanation (SHAP) method to this study. SHAP is an open-source software for interpreting ML models with many input parameters, which allows users to visually understand how each parameter affects the prediction function. We can study the influence of each parameter on the predicted output, by calculating its corresponding SHAP value. For example, the SHAP analysis ranks the channel Cl2 as the most influential parameter.

Of all four iterations, the fourth and final iteration considered only intuitive, physical relationships and water quality measured downstream from filtration. The authors summarized the comparative performance of the four ML modeling iterations. According to them, the key findings are: 1) with a sufficient number of related input parameters, ML models can produce accurate prediction results; 2) ML models can be driven by correlations that may or may not have a physical basis; 3) ML models can be analogous to operator experience.

Looking forward, the research team suggests that future studies should explore expanding the applicability domain. For example, the data set analyzed was limited to only one full year. Therefore, greater data availability is expected to broaden the applicability domain and improve the predictivity.

More information:
Wiley Helm et al, Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction, Frontiers of Environmental Science & Engineering (2023). DOI: 10.1007/s11783-024-1777-6. journal.hep.com.cn/fese/EN/10. … 07/s11783-024-1777-6

Provided by
Frontiers Journals

Citation:
Inexpensive water-treatment monitoring process powered by machine learning (2023, November 6)
retrieved 6 November 2023
from https://techxplore.com/news/2023-11-inexpensive-water-treatment-powered-machine.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

You Can Rent Martha Stewart’s Farmhouse For Just $11.23

Next Post

Former White House Economist Expects USD Decline

Next Post
Former White House Economist Expects USD Decline

Former White House Economist Expects USD Decline

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Europe’s Devastating Power Outage in Photos

Europe’s Devastating Power Outage in Photos

9 months ago
Police cheerfully joins rebel group as conflict rages on in Congo

Police cheerfully joins rebel group as conflict rages on in Congo

12 months ago
President Ruto puts Contractors on Notice

President Ruto puts Contractors on Notice

1 year ago
Marathon Oil Signs Deal with Glencore for Alba Gas in Equatorial Guinea

Marathon Oil Signs Deal with Glencore for Alba Gas in Equatorial Guinea

2 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • The world’s top 10 most valuable car brands in 2025

    0 shares
    Share 0 Tweet 0
  • Top 10 African countries with the highest GDP per capita in 2025

    0 shares
    Share 0 Tweet 0
  • Global ranking of Top 5 smartphone brands in Q3, 2024

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0

Get strategic intelligence you won’t find anywhere else. Subscribe to the Limitless Beliefs Newsletter for monthly insights on overlooked business opportunities across Africa.

Subscription Form

© 2026 LBNN – All rights reserved.

Privacy Policy | About Us | Contact

Tiktok Youtube Telegram Instagram Linkedin X-twitter
No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • LBNN Blueprints
  • Quizzes
    • Enneagram quiz
  • Fashion Intelligence

© 2023 LBNN - All rights reserved.