Wednesday, June 18, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Evolutionary mental state transition model helps machine learning algorithms track emotions

Simon Osuji by Simon Osuji
August 29, 2024
in Artificial Intelligence
0
Evolutionary mental state transition model helps machine learning algorithms track emotions
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter


Evolutionary mental state transition model helps machine learning algorithms track emotions
Conceptual diagram of the evolutionary mental state transition model. Credit: Fu-Ji Ren et al.

Seeking to improve automatic emotion tracking, which detects and monitors emotions over time, a group of researchers in the field of human-computer interaction decided to approach the task by modeling shifts in internal emotions rather than only interpreting external emotional signals.

Related posts

Far-Right ‘Appeal to Heaven’ Flag Flown Above Government Agency in DC

Far-Right ‘Appeal to Heaven’ Flag Flown Above Government Agency in DC

June 18, 2025
Making facsimiles of the dead raises ethical quandaries

Making facsimiles of the dead raises ethical quandaries

June 18, 2025

Using insights from psychology, they developed the evolutionary mental state transition model, a model that incorporates a mental state transition network. They tested its effectiveness on two multimodal emotion datasets, producing noticeably more accurate results than existing alternatives.

Their research was published on April 8, 2024 in Intelligent Computing.

In addition to accuracy, another advantage of the evolutionary mental state transition model for emotion tracking is its reduced computational time and smaller footprint. The model has fewer parameters than other published models, which makes it “suitable for deployment on mobile devices and robots,” according to the authors.

Daily life applications of emotion tracking include public opinion monitoring, marketing communications, mental health monitoring, and online education. Extensions of the authors’ model could be developed to personalize emotion tracking to take into account individual variations in emotional fluctuation. Work in this direction would build on the psychologically realistic nature of the model, which attempts to capture the “natural dynamics of emotions and their impact on mental states.”

The authors’ system for emotion tracking consists of several steps:

  1. Multi-modal pattern recognition based on language, vision, and acoustic inputs
  2. Feature fusion in a transformer
  3. Pooling to calculate “external emotional energy” (apparent emotion)
  4. Determination of actual emotion using a unique mental state transition network

In the evolutionary mental state transition model, language, vision, and acoustic features are first extracted from the data and encoded, retaining their chronological order. Next, multihead cross-attention blocks are used to fuse the features at each time step; this is the most computationally intensive step. Third, maximum pooling and average pooling, two varieties of a common deep learning technique, are used for dimensionality reduction, and the features are transformed into external emotional energy at each time step.

Finally, the mental state transition network is used to take into account patterns in changes in the subject’s emotions over time, as well as external emotional energy, to determine the actual emotional state at a particular time step.

The network was built on a set of probabilities resulting from data previously collected from 200 participants about the associations between different emotion pairs. It predicts emotional state in part by weighing the contributions of multiple simultaneous emotions rather than assuming a subject is experiencing only one.

The performance of the evolutionary mental state transition model was compared with that of a number of baseline methods using classification tasks based on two large datasets, the CMU Multimodal Opinion Sentiment and Emotion Intensity dataset and the Ren Chinese Emotion Corpus. The CMU dataset, consisting of recorded monologues in English, identifies happiness, sadness, anger, disgust, surprise, and fear. The Chinese corpus consists of blog texts, and was used to test the mental state transition network component.

More information:
Fu-Ji Ren et al, Tracking Emotions Using an Evolutionary Model of Mental State Transitions: Introducing a New Paradigm, Intelligent Computing (2024). DOI: 10.34133/icomputing.0075

Provided by
Intelligent Computing

Citation:
Evolutionary mental state transition model helps machine learning algorithms track emotions (2024, August 29)
retrieved 29 August 2024
from https://techxplore.com/news/2024-08-evolutionary-mental-state-transition-machine.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

US efforts to stop Chinese hackers haven’t been fully effective, FBI official says

Next Post

Top 2 Coins That May Give Major Returns In September

Next Post
Top 2 Coins That May Give Major Returns In September

Top 2 Coins That May Give Major Returns In September

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Investment adventures in Africa’s frontier markets

Investment adventures in Africa’s frontier markets

1 year ago
Candida Gertler steps down from Outset Contemporary Art Fund citing ‘alarming rise of antisemitism’ in cultural spaces

Candida Gertler steps down from Outset Contemporary Art Fund citing ‘alarming rise of antisemitism’ in cultural spaces

7 months ago
Saudi Arabia arrested over 18,400 last week in residency and labour operations

Saudi Arabia arrested over 18,400 last week in residency and labour operations

2 months ago
Jordyn Woods leaves Karl-Anthony Towns at home to go watch Beyonc

Jordyn Woods leaves Karl-Anthony Towns at home to go watch Beyonc

2 years ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.