Thursday, May 29, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

A backscatter communication technique for low-power internet of things communication

Simon Osuji by Simon Osuji
July 12, 2024
in Artificial Intelligence
0
A backscatter communication technique for low-power internet of things communication
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Pusan National University researchers propose backscatter communication technique for low-power internet of things communication
The researchers used circuit modeling, advanced modulation techniques, and polarization diversity to design a MIMO transceiver system for BackCom applications, achieving a spectral efficiency of 2.0 bps/Hz and improving energy efficiency by 40% compared to conventional techniques. Credit: Professor Sangkil Kim from Pusan National University

Backscatter communication (BackCom) is a promising low-power method for the widespread adoption of the Internet of Things (IoT) technologies, where connected devices reflect and modulate existing signals by altering their load impedance, rather than generating signals themselves.

Related posts

Auto Shanghai 2025 Wasn’t Just a Car Show. It Was a Warning to the West

Auto Shanghai 2025 Wasn’t Just a Car Show. It Was a Warning to the West

May 29, 2025
The Switch 2 May Signal the End of Physical Games

The Switch 2 May Signal the End of Physical Games

May 29, 2025

To achieve low bit error rates and high data rates, higher-order modulation schemes such as Quadrature Amplitude Modulation (QAM) are selected based on accurately modeled reflection coefficients. However, discrepancies between simulations and real-world measurements make it challenging to accurately predict the optimal reflection coefficient.

In a recent study, a research team led by Professor Sangkil Kim from the Department of Electronics Engineering at Pusan National University used transfer learning to accurately model the in-phase/quadrature or I/Q load modulators. Additionally, they introduced polarization diversity to design a BackCom system that utilizes multiple antennas for simultaneous signal transmission and reception.

Their paper is published in the IEEE Internet of Things Journal.

“As the technology for more efficient and reliable backscatter communication improves, it lowers the barrier for IoT adoption across numerous industries. This could lead to a proliferation of IoT devices and integrated sensing and communication (ISC), facilitating smart cities, more efficient industries, and enhanced personal and public services,” says Prof. Kim.

Transfer learning involves applying knowledge gained from one task to enhance performance on a related task. The researchers pretrained an artificial neural network (ANN) using simulated input bias voltages (VI and VQ). This initial training step familiarized the ANN with the load modulator behaviors across varying voltage conditions.

The knowledge gained from the pretraining step was then used in a main training step, where the ANN was trained using experimental data to predict reflection coefficients based on VI and VQ inputs.

This transfer of knowledge enabled the ANN to improve its predictions, achieving a minimal deviation of only 0.81% between modeled and measured reflection coefficients. Using these accurate models, researchers selected optimal 4- and 16-QAM schemes by aligning predicted reflection coefficients with specific points in the QAM constellation. This optimization ensured energy-efficient data transmission, with total consumption below 0.6 mW, much lower than conventional wireless systems.

Following this, the researchers designed a 2 × 2 × 2 MIMO transceiver system for BackCom, featuring two transmit and two receive antennas with different polarizations (such as vertical and horizontal). This setup enhances signal reception, throughput, and efficiency in BackCom. Utilizing a dual-polarized Vivaldi antenna, the team achieved a high gain exceeding 11.5 dBi and effective cross-polarization suppression of 18 dB.

The researchers tested their algorithm and MIMO BackCom system in the 5.725 GHz to 5.875 GHz C-band of the Industrial, Scientific, and Medical band, offering a 150 MHz bandwidth. Their approach achieved a spectral efficiency of 2.0 bps/Hz using 4-QAM modulation, demonstrating effective bandwidth utilization. They also attained an error vector magnitude of 9.35%, indicating high reliability and efficiency in data transmission.

“The combination of accurate circuit modeling, advanced modulation techniques, and polarization diversity, all tested in over-the-air environments, presents a holistic approach to tackling the challenges in ISC and IoT,” says Prof. Kim.

Overall, the proposed system lays the groundwork for a highly reliable and efficient backscatter system for multiple applications, including consumer electronics, health care monitoring, smart infrastructure for urban management, environmental sensing, and even radar communication.

More information:
Hyunmin Jeong et al, Polarization Diversity and Transfer Learning-Based Modulation Optimization for High-Speed Dual Channel MIMO Backscatter Communication, IEEE Internet of Things Journal (2024). DOI: 10.1109/JIOT.2024.3379854

Provided by
Pusan National University

Citation:
A backscatter communication technique for low-power internet of things communication (2024, July 9)
retrieved 12 July 2024
from https://techxplore.com/news/2024-07-backscatter-communication-technique-power-internet.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Chevron and Hess say US FTC merger review expected for third quarter

Next Post

US Plan to Deploy Long-Range Missiles in Germany Signals Cold War: Russia

Next Post
US Plan to Deploy Long-Range Missiles in Germany Signals Cold War: Russia

US Plan to Deploy Long-Range Missiles in Germany Signals Cold War: Russia

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Kenyan Chef Who Works For Manchester United

Kenyan Chef Who Works For Manchester United

2 years ago
Polyamory Has Entered the Chat

Polyamory Has Entered the Chat

1 year ago
Entrepreneur builds tech solutions for farming sector

Entrepreneur builds tech solutions for farming sector

1 year ago
Republic of Congo Invests $1.3 Million to Strengthen Cybersecurity Efforts

Republic of Congo Invests $1.3 Million to Strengthen Cybersecurity Efforts

2 months ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.