Wednesday, June 18, 2025
LBNN
  • Business
  • Markets
  • Politics
  • Crypto
  • Finance
  • Energy
  • Technology
  • Taxes
  • Creator Economy
  • Wealth Management
  • Documentaries
No Result
View All Result
LBNN

Researchers develop new training technique that aims to make AI systems less socially biased

Simon Osuji by Simon Osuji
June 25, 2024
in Artificial Intelligence
0
Researchers develop new training technique that aims to make AI systems less socially biased
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


datasets
Credit: CC0 Public Domain

An Oregon State University doctoral student and researchers at Adobe have created a new, cost-effective training technique for artificial intelligence systems that aims to make them less socially biased.

Related posts

eBay and Vestiaire Collective Want an Exemption from Trump’s Tariffs

eBay and Vestiaire Collective Want an Exemption from Trump’s Tariffs

June 18, 2025
The Nissan Leaf Is Back and Looking to Make Up Lost Ground

The Nissan Leaf Is Back and Looking to Make Up Lost Ground

June 18, 2025

Eric Slyman of the OSU College of Engineering and the Adobe researchers call the novel method FairDeDup, an abbreviation for fair deduplication. Deduplication means removing redundant information from the data used to train AI systems, which lowers the high computing costs of the training.

Datasets gleaned from the internet often contain biases present in society, the researchers said. When those biases are codified in trained AI models, they can serve to perpetuate unfair ideas and behavior.

By understanding how deduplication affects bias prevalence, it’s possible to mitigate negative effects—such as an AI system automatically serving up only photos of white men if asked to show a picture of a CEO, doctor, etc. when the intended use case is to show diverse representations of people.

“We named it FairDeDup as a play on words for an earlier cost-effective method, SemDeDup, which we improved upon by incorporating fairness considerations,” Slyman said. “While prior work has shown that removing this redundant data can enable accurate AI training with fewer resources, we find that this process can also exacerbate the harmful social biases AI often learns.”

Slyman presented the FairDeDup algorithm last week in Seattle at the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

FairDeDup works by thinning the datasets of image captions collected from the web through a process known as pruning. Pruning refers to choosing a subset of the data that’s representative of the whole dataset, and if done in a content-aware manner, pruning allows for informed decisions about which parts of the data stay and which go.

“FairDeDup removes redundant data while incorporating controllable, human-defined dimensions of diversity to mitigate biases,” Slyman said. “Our approach enables AI training that is not only cost-effective and accurate but also more fair.”

In addition to occupation, race and gender, other biases perpetuated during training can include those related to age, geography and culture.

“By addressing biases during dataset pruning, we can create AI systems that are more socially just,” Slyman said. “Our work doesn’t force AI into following our own prescribed notion of fairness but rather creates a pathway to nudge AI to act fairly when contextualized within some settings and user bases in which it’s deployed. We let people define what is fair in their setting instead of the internet or other large-scale datasets deciding that.”

Collaborating with Slyman were Stefan Lee, an assistant professor in the OSU College of Engineering, and Scott Cohen and Kushal Kafle of Adobe.

More information:
Eric Slyman et al, FairDeDup: Detecting and Mitigating Vision-Language Fairness Disparities in Semantic Dataset Deduplication (2024)

Provided by
Oregon State University

Citation:
Researchers develop new training technique that aims to make AI systems less socially biased (2024, June 25)
retrieved 25 June 2024
from https://techxplore.com/news/2024-06-technique-aims-ai-socially-biased.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Make a Real Difference in Your Community with a Huntington Franchise

Next Post

SA Navy ensures continuous hydrographic services amid capability gap

Next Post
SA Navy ensures continuous hydrographic services amid capability gap

SA Navy ensures continuous hydrographic services amid capability gap

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

RECOMMENDED NEWS

Iraq faces uphill battle to meet 20% renewable energy target by 2030

Iraq faces uphill battle to meet 20% renewable energy target by 2030

2 months ago
Sanwo-Olu and State Commissioners Discuss on Electricity Generation

Sanwo-Olu and State Commissioners Discuss on Electricity Generation

7 months ago
Sudan Paramilitaries Kill 57 in Darfur Attacks

Sudan Paramilitaries Kill 57 in Darfur Attacks

2 months ago
AI model translates text commands into motion for diverse robots and avatars

AI model translates text commands into motion for diverse robots and avatars

1 month ago

POPULAR NEWS

  • Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    Ghana to build three oil refineries, five petrochemical plants in energy sector overhaul

    0 shares
    Share 0 Tweet 0
  • When Will SHIB Reach $1? Here’s What ChatGPT Says

    0 shares
    Share 0 Tweet 0
  • Matthew Slater, son of Jackson State great, happy to see HBCUs back at the forefront

    0 shares
    Share 0 Tweet 0
  • Dolly Varden Focuses on Adding Ounces the Remainder of 2023

    0 shares
    Share 0 Tweet 0
  • US Dollar Might Fall To 96-97 Range in March 2024

    0 shares
    Share 0 Tweet 0
  • Privacy Policy
  • Contact

© 2023 LBNN - All rights reserved.

No Result
View All Result
  • Home
  • Business
  • Politics
  • Markets
  • Crypto
  • Economics
    • Manufacturing
    • Real Estate
    • Infrastructure
  • Finance
  • Energy
  • Creator Economy
  • Wealth Management
  • Taxes
  • Telecoms
  • Military & Defense
  • Careers
  • Technology
  • Artificial Intelligence
  • Investigative journalism
  • Art & Culture
  • Documentaries
  • Quizzes
    • Enneagram quiz
  • Newsletters
    • LBNN Newsletter
    • Divergent Capitalist

© 2023 LBNN - All rights reserved.